【题目】已知抛物线y=x2+ax+b与x轴交于点A(﹣1,0),B(3,0).
(1)求抛物线的解析式;
(2)过点D(0,
)作x轴的平行线交抛物线于E,F两点,求EF的长;
(3)当
时,直接写出x的取值范围是 .
科目:初中数学 来源: 题型:
【题目】我们知道:有一内角为直角的三角形叫做直角三角形.类似地我们定义:有一内角为
的三角形叫做半直角三角形.如图,在平面直角坐标系中,
为原点,
,
,
是
轴上的一个动点,
(
、
、
按顺时针方向排列),
与经过
、
、
三点的
交于点
,
平分
,连结
,
.显然
、
、
是半直角三角形.
![]()
(1)求证:
是半直角三角形;
(2)求证:
;
(3)若点
的坐标为
,求
的长;
(4)
交
轴于点
,求△ACF与△BCA的面积之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=x+m的图象与x轴y轴分别交于点A、B,与反比例函数y2=
(x<0)的图象分别交于点C、D,且C点的坐标为(﹣1,2).
![]()
(1)分别求出一次函数及反比例函数的关系式;
(2)求出点D的坐标并直接写出y1>y2的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:
数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.
![]()
理解:
⑴如图
,已知
是⊙
上两点,请在圆上找出满足条件的点
,使
为“智慧三角形”(画出点
的位置,保留作图痕迹);
⑵如图
,在正方形
中,
是
的中点,
是
上一点,且
,试判断
是否为“智慧三角形”,并说明理由;
运用:
⑶如图
,在平面直角坐标系
中,⊙
的半径为
,点
是直线
上的一点,若在⊙
上存在一点
,使得
为“智慧三角形”,当其面积取得最小值时,直接写出此时点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l⊥线段AB于点B,点C在AB上,且AC=2CB,点M是直线l上的动点,作点B关于直线CM的对称点B’,直线AB’与直线CM相较于点P,联结PB.
(1)如图1,若点P与点M重合,则∠PAB=_____°,线段PA与PB的比值为______.
(2)如图2,若点P与点M不重合,设过P、B、C三点的圆与直线AP相交于点D,联结CD.
①求证:CD=CB’.
②求证:PA=2PB.
(3)如图③,AC=2,BC=1,则满足条件PA=2PB的点都在一个确定的圆上,在以下两小题中选做一题:
①如果你能发现这个确定圆的圆心和半径,那么不必写出发现过程,只要证明这个圆上的任意一点Q,都满足QA=2QB.
②如果你不能发现这个确定圆的圆心和半径,那么请取几个特殊位置的P点,如点P在直线AB上,点P与点M重合等进行探究,求这个圆的半径.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作
、
、
,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.
(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为 ;
(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;
(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为 (请用含n的式子表示)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市创全国卫生城市,某街道积极响应,决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱,若购买4个垃圾箱比购买5个温馨提示牌多350元,垃圾箱的单价是温馨提示牌单价的3倍.
求温馨提示牌和垃圾箱的单价各是多少元?
如果该街道需购买温馨提示牌和垃圾箱共3000个.
求购买温馨提示牌和垃圾箱所需费用
元
与温馨提示牌的个数x的函数关系式;
若该街道计划费用不超过35万元,而且垃圾箱的个数不少于温馨提示牌的个数的
倍,求有几种可供选择的方案?并找出资金最少的方案,求出最少需多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
![]()
(1)写出方程ax2+bx+c=0的两个根;
(2)写出y随x的增大而减小的自变量x的取值范围;
(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com