Èçͼ£¬ÌÝÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏBAD=90¡ã£¬CE¡ÍADÓÚµãE£¬AD=4cm£¬BC=2cm£¬AB=3cm£®´Ó³õʼʱ¿Ì¿ªÊ¼£¬¶¯µãP¡¢Q ·Ö±ð´ÓµãA¡¢Bͬʱ³ö·¢£¬Ô˶¯ËٶȾùΪ1cm/s£¬¶¯µãPÑØA¡úB¡úC¡úEµÄ·½ÏòÔ˶¯£¬µ½µãEÍ£Ö¹£»¶¯µãQÑØB¡úC¡úE¡úDµÄ·½ÏòÔ˶¯£¬µ½µãDÍ£Ö¹£®ÉèÔ˶¯Ê±¼äΪxs£¬¡÷PAQµÄÃæ»ýΪy cm2£®£¨ÕâÀï¹æ¶¨£ºÏß¶ÎÊÇÃæ»ýΪ0µÄÈý½ÇÐΣ©½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©µ±x=2sʱ£¬y=
2
2
cm2£»µ±x=
52
sʱ£¬y=
2.5
2.5
cm2£»
£¨2£©µ±¶¯µãPÔÚÏß¶ÎBCÉÏÔ˶¯£¬¼´3¡Üx¡Ü5ʱ£¬ÇóyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Çó³öy=2.5ʱxµÄÖµ£»
£¨3£©µ±¶¯µãPÔÚÏß¶ÎCEÉÏÔ˶¯£¬¼´5£¼x¡Ü8 Ê±£¬ÇóyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨4£©Ö±½Óд³öÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬Ê¹PQÓëËıßÐÎABCEµÄ¶Ô½ÇÏ߯½ÐеÄËùÓÐxµÄÖµ£®
·ÖÎö£º£¨1£©µ±x=2sʱ£¬AP=2£¬BQ=2£¬ÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½Ö±½Ó¿ÉÒÔÇó³öyµÄÖµ£¬µ±x=
5
2
sʱ£¬¡÷PAQµÄ¸ß¾ÍÊÇ2£¬µ×Ϊ2.5£¬ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉÒÔÇó³öÆä½â£®
£¨2£©µ±3¡Üx¡Ü5ʱ£¬ÀûÓÃy=SÌÝÐÎABCQ-S¡÷ABP-S¡÷CPQ£¬ÇóyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬ÒÔ¼°Çó³öy=2.5ʱxµÄÖµ£»
£¨3£©·Ö±ðÀûÓõ±5£¼x¡Ü7ʱ£¬ÒÔ¼°µ±7£¼x¡Ü8ʱ£¬Çó³öyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨4£©ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬ÏàËÆÈý½ÇÐεĶÔÓ¦Ï߶γɱÈÀý¾Í¿ÉÒÔÇó³ö¶ÔÓ¦µÄxµÄÖµ£®
½â´ð£º½â£º£¨1£©¡ßµ±x=2sʱ£¬AP=2£¬BQ=2£¬
¡ày=
1
2
¡Á2¡Á2=2£¨cm2£©£¬
µ±x=
5
2
sʱ£¬¡÷PAQµÄ¸ß¾ÍÊÇ2£¬µ×Ϊ2.5£¬
y=
1
2
¡Á2¡Á2.5=2.5£¨cm2£©£¬

£¨2£©Èçͼ1£¬µ±3¡Üx¡Ü5ʱ£¬
y=SÌÝÐÎABCQ-S¡÷ABP-S¡÷CPQ
=
1
2
¡Á[3+(x-2)]¡Á2-
1
2
¡Á3(x-3)-
1
2
(5-x)(x-2)

=
1
2
x2-4x+
21
2
£®
µ±y=2.5ʱ£¬
1
2
x2-4x+
21
2
=2.5
£¬
£¨x-4£©2=0
½âµÃ£ºx1=x2=4£¬
¡àµ±x=4ʱ£¬y=2.5£®

£¨3£©Èçͼ2£¬µ±5£¼x¡Ü7ʱ£¬
y=
1
2
PE¡ÁAQ=
1
2
£¨2+x-5£©£¨8-x£©=-
1
2
x2+
11
2
x-12£»
Èçͼ3£¬µ±7£¼x¡Ü8ʱ£¬
y=
1
2
¡ÁAD¡ÁPE=
1
2
¡Á4¡Á£¨8-x£©=16-2x£»

£¨4£©ÉèÔ˶¯Ê±¼äΪxÃ룬
Èçͼ4£¬µ±PQ¡ÎACʱ£¬BP=3-x£¬BQ=x£¬
´Ëʱ¡÷BPQ¡×¡÷BAC£¬
¹Ê
BP
AB
=
BQ
BC
£¬¼´
3-x
3
=
x
2
£¬
½âµÃ£ºx=1.2£»
Èçͼ5£¬µ±PQ¡ÎBEʱ£¬PC=5-x£¬QC=x-2£¬
´Ëʱ¡÷PCQ¡×¡÷BCE£¬
¹Ê
PC
BC
=
CQ
CE
£¬¼´
5-x
2
=
x-2
3
£¬
½âµÃx=3.8£»
Èçͼ6£¬µ±PQ¡ÎBEʱ£¬EP=8-x£¬EQ=x-5£¬
´Ëʱ¡÷PEQ¡×¡÷BAE£¬
¹Ê
EP
AB
=
EQ
AE
£¬¼´
8-x
3
=
x-5
2
£¬
½âµÃx=6.2£®
×ÛÉÏËùÊö£ºxµÄֵΪ£º1.2£¬3.8£¬6.2£®
¹Ê´ð°¸Îª£º2£¬2.5£®
µãÆÀ£º±¾Ì⿼²éÁËÓú¯Êý¹ØÏµÊ½±íʾ±ä»¯¹ý³ÌÖÐÈý½ÇÐεÄÃæ»ýºÍÏàËÆÈý½ÇÐεÄÅж¨¼°ÐÔÖÊÒÔ¼°ÌÝÐεÄÃæ»ýµÈ¶à¸ö֪ʶµã£¬ÀûÓ÷ÖÀàÌÖÂ۵óöÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖª£¬Èçͼ£¬ÌÝÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏB=45¡ã£¬¡ÏC=120¡ã£¬AB=8£¬ÔòCDµÄ³¤Îª£¨¡¡¡¡£©
A¡¢
8
6
3
B¡¢4
6
C¡¢
8
2
3
D¡¢4
2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

5¡¢ÒÑÖª£ºÈçͼ£¬ÌÝÐÎABCDÖУ¬AD¡ÎBC£¬AB=DC£¬AC¡¢BDÏཻÓÚµãO£¬ÄÇô£¬Í¼ÖÐÈ«µÈÈý½ÇÐι²ÓÐ
3
¶Ô£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

10¡¢Èçͼ£¬ÌÝÐÎABCDÖУ¬AD¡ÎBC£¬BDΪ¶Ô½ÇÏߣ¬ÖÐλÏßEF½»BDÓÚOµã£¬ÈôFO-EO=3£¬ÔòBC-ADµÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÌÝÐÎABCDÖУ¬ÒÑÖªAD¡ÎBC£¬¡ÏA=90¡ã£¬AB=7£¬AD=2£¬cosC=
2
10
£®
£¨1£©ÇóBCµÄ³¤£»
£¨2£©ÊÔÔÚ±ßABÉÏÈ·¶¨µãPµÄλÖã¬Ê¹¡÷PAD¡×¡÷PBC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÌÝÐÎABCDÖУ¬AD¡ÎBC£¬BC=5£¬AD=3£¬¶Ô½ÇÏßAC¡ÍBD£¬ÇÒ¡ÏDBC=30¡ã£¬ÇóÌÝÐÎABCDµÄ¸ß£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸