精英家教网 > 初中数学 > 题目详情
精英家教网如图,点M、E分别在正方形ABCD的边AB、BC上,以M为圆心,ME的长为半径画弧,交AD边于点F.当
∠EMF=90°时,求证:AF=BM.
分析:求简单的线段相等,可证线段所在的三角形全等,本题可通过证△AMF≌△BEM,来得出AF=BM的结论.
解答:精英家教网证明:∵四边形ABCD为正方形,
∴∠A=∠B=90°;(1分)
∴∠1+∠2=90°;
∵∠EMF=90°,
∴∠1+∠3=90°;
∴∠2=∠3;(2分)
∵E、F两点在⊙M上,
∴MF=ME(3分)
在△AMF和△BEM中,
∠A=∠B
∠2=∠3
MF=EM

∴△AMF≌△BEM;(4分)
∴AF=BM.(5分)
点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点D、E分别在△ABC的边上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,则AE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b>0 ).若直线AB为一次函数y=kx+m的图象,则当
b
a
是整数时,满足条件的整数k的值共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,点M、N分别在正三角形ABC的BC、CA边上,且BM=CN,AM、BN交于点Q,求∠AQN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,点D、E分别在∠BAC的边上,连接DC、BE,若∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B分别在直线l1、l2上,过点A作到l2的距离AM,过点B作直线l3∥l1

查看答案和解析>>

同步练习册答案