精英家教网 > 初中数学 > 题目详情
精英家教网如图,两个反比例函数y=
k1
x
和y=
k2
x
(其中k1>0>k2)在第一象限内的图象是C1,第二、四象限内的图象是C2,设点P在C1上,PC⊥x轴于点M,交C2于点C,PA⊥y轴于点N,交C2于点A,AB∥PC,CB∥AP相交于点B,请用k1,k2的代数式表示四边形ODBE的面积:
 
分析:易知四边形ABCP、四边形ODBE都是矩形,欲求四边形ODBE的面积,必须求出OE、OD的值,即CM、AN的值;设出点P的坐标,然后表示出A、C的坐标,即可得解.
解答:解:设P(a,b),则ab=k1;(a>0,b>0)
由于PC⊥x轴,所以P、C横坐标相同,将x=a代入y=
k2
x
中,得:y=
k2
a

即CM=OD=-
k2
a
,同理可得:AN=OE=-
k2
b

∴S矩形ODBE=OD•OE=
k22
ab
=
k22
k1
点评:此题主要考查了反比例函数图象上点的坐标意义,以及矩形面积的求法,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,两个反比例函数y=
2
x
和y=
1
x
在第一象限的图象如图所示,当P在y=
2
x
的图象上,PC⊥x轴于点C,交y=
1
x
的图象于点A,PD⊥y轴于点D,交y=
1
x
的图象于点B,则四边形PAOB的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,两个反比例函数y=
k1
x
和y=
k2
x
(其中k1>0>k2)在第一象限内的图象是C1,第二、四象限内的图象是C2,设点P在C1上,PC⊥x轴于点M,交C2于点C,PA⊥y轴于点N,交C2于点A,AB∥PC,CB∥AP相交于点B,则四边形ODBE的面积为(  )
A、|k1-k2|
B、
k1
|k2|
C、|k1•k2|
D、
k22
k1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•德州)如图,两个反比例函数y=
1
x
y=-
2
x
的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,两个反比例函数y=
1
x
和y=-
2
x
的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为
9
2
9
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,两个反比例函数y1=
1
x
y2=
2
x
在第一象限内的图象依次是C1和C2,设点p1在c2上,p1E1⊥x轴于点E1,p1D1⊥y轴与点D1,交C1于点A1交c1与点B1
(1)求出四边形P1A1OB1的面积S1
(2)若y3=
3
x
在第一象限的图象是c3,p2是C3上的点,P2E2⊥x轴于点E2,交C2于点A2,P2D2⊥y轴于点D2,交C2于点B2,则四边形P2A2OB2的面积S2=
1
1

(3)按此类推,试猜想四边形PnAnOBn的面积Sn=
1
1
,在所给坐标系中画出草图,并验证你的猜想.

查看答案和解析>>

同步练习册答案