精英家教网 > 初中数学 > 题目详情
如图,一次函数y=kx+b的图象与反比例函数y=
m
x
的图象交于点A﹙-2,-5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.
(1)求反比例函数y=
m
x
和一次函数y=kx+b的表达式;
(2)根据图象直接写出使一次函数的值小于反比例函数的值的x的取值范围.
分析:(1)先把A点坐标代入y=
m
x
可求出m=10,从而确定反比例函数解析式,再把C(5,n)代入反比例函数解析式求出n,则可确定C点坐标,然后利用待定系数法求一次函数的解析式;
(2)观察函数图象得到当x<-2或0<x<5时,一次函数的图象都在反比例函数图象下方,即一次函数的值小于反比例函数的值.
解答:解:(1)把A(-2,-5)代入y=
m
x
得m=-2×(-5)=10,
故反比例函数解析式为y=
10
x

把C(5,n)代入y=
10
x
得5n=10,解得n=2,
则C点坐标为(5,2),
把A(-2,-5)和C(5,2)代入y=kx+b得
-2k+b=-5
5k+b=2
,解得
k=1
b=-3

故一次函数得解析式为y=x-3;

(2)使一次函数的值小于反比例函数的值的x的取值范围为x<-2或0<x<5.
点评:本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数解析式,即求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案