如图,已知AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC
=PE·PO .![]()
(1)求证:PC是⊙O的切线;
(2)若OE:EA=1:2,PA=6,求⊙O的半径;
(3)在(2)问下,求
的值。
(1)连接OC,根据PC2=PE•PO和∠P=∠P,可证得△PCO∽△PEC,即可证得∠PCO=∠PEC,再结合已知条件即可得出PC⊥OC,从而证得结论;(2)3;(3)![]()
解析试题分析:(1)根据
和∠P=∠P,可证得△PCO∽△PEC,即可证得∠PCO=∠PEC,再结合已知条件即可得出PC⊥OC,从而证得结论;
(2)设OE=x,则AE=2x,根据切割线定理得
,则
,解一元二次方程即可求出x,从而得出⊙O的半径;
(3)连接BC,根据PC是⊙O的切线,得∠PCA=∠B,根据勾股定理可得出CE,BC,再由三角函数的定义即可求出结果.
(1)∵
∴![]()
∵∠P=∠P
∴△PCO∽△PEC
∴∠PCO=∠PEC
∵CD⊥AB
∴∠PEC=90°
∴∠PCO=90°
∴PC是⊙O的切线;
(2)设OE=x
∵OE:EA=1:2
∴AE=2x
∵![]()
∴![]()
∵PA=6
∴(6+2x)(6+3x)=6(6+6x),
解得x=1
∴OA=3x=3
∴⊙O的半径为3;
(3)连接BC![]()
∵![]()
∴![]()
∴![]()
∴![]()
∵PC是⊙O的切线
∴∠PCA=∠B![]()
考点:切线的判定和性质,勾股定理,垂径定理,相似三角形的判定和性质,锐角三角函数的定义
点评:本题是一道综合性的题目,主要考查了学生对各种定义的综合应用能力,是中考压轴题,难度中等.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| BE | AD |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com