精英家教网 > 初中数学 > 题目详情
(2009•广州)如图,在⊙O中,∠ACB=∠BDC=60°,AC=2cm.
(1)求∠BAC的度数;(2)求⊙O的周长.

【答案】分析:(1)由圆周角定理得,∠A=∠D=60°;
(2)由三角形内角和得∠ABC=60,°所以△ABC是等边三角形,作OE⊥AC,连接OA,由垂径定理得,AE=CE=AC=cm,再由余弦的概念求得半径OA的长,由圆的周长公式求得周长.
解答:解:(1)∠BAC=∠BDC=60°(同弧所对的圆周角相等);

(2)∠ABC=180°-∠BAC-∠ACB=60°,
∴△ABC是等边三角形,
作OE⊥AC于点E,连接OA,则OA平分∠BAC,
∴∠OAE=30°,
∴OA==2cm,
所以⊙O的周长=2π×2=4πcm.
点评:本题利用了圆周角定理,等边三角形的判定和性质,垂径定理,余弦的概念,圆周长公式求解.
练习册系列答案
相关习题

科目:初中数学 来源:2011年江苏省苏州市张家港二中中考数学一模试卷(解析版) 题型:解答题

(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市中考数学试卷(解析版) 题型:解答题

(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市中考数学试卷(解析版) 题型:解答题

(2009•广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.
(1)若AG=AE,证明:AF=AH;
(2)若∠FAH=45°,证明:AG+AE=FH;
(3)若Rt△GBF的周长为1,求矩形EPHD的面积.

查看答案和解析>>

同步练习册答案