精英家教网 > 初中数学 > 题目详情
如图1,点A、B分别是两条平行线m、n上任意两点,在直线n上找一点C,使BC=kAB(k为常数),连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.
(1)请说明∠AFE=∠ABE的理由;
(2)当k=1时,探究线段EF与EB的数量关系,并加以说明;
(3)当k≠1时,探究线段EF与EB的比值,请说明理由. 
精英家教网
分析:(1)根据两直线平行,内错角相等求出∠FAB=∠ABC,∠BEF=∠ABC,所以可得到∠FAB=∠FEB,设AB、EF相交于点O,可以利用两角对应相等两三角形相似证明△AOF∽△EOB,然后根据相似三角形的对应角相等即可证明;
(2)过点E作ED⊥m,EP⊥AB,根据k=1可知AB=BC,再根据对边对等角的性质∠BAC=∠ACB,又两直线平行,内错角相等,可以证明AE平分∠DAP,所以ED=EP,然后证明△FDE与△EPB全等,根据全等三角形对应边相等即可证明;
(3)连接FB.设AB与EF交于点O,利用(1)的结论先证明△AOF∽△EOB,根据相似三角形对应边成比例得到
OA
OF
=
OE
OB
,再根据两边对应成比例,夹角相等证明△ACB∽△FBE,再根据相似三角形对应边成比例列出比例式即可得到线段EF、EB与线段AB、BC的关系.
解答:精英家教网解:(1)∵m∥n,
∴∠FAB=∠ABC,
∵∠FEB=∠ABC,
∴∠FAB=∠FEB,
∵∠AOF=∠EOB,
∴△AOF∽△EOB,
∴∠AFE=∠ABE;

(2)作ED⊥m,EP⊥AB,
∵k=1,
∴AB=BC,
∴∠BAC=∠ACB,
∵m∥n,
∴∠DAE=∠ACB,
∴∠DAE=∠BAC,
∴ED=EP(角平分线上的点到角的两边的距离相等),
在△FDE和△EPB中,
∠AFE=ABE
∠EDF=∠EPB=90°
ED=EP

∴△FDE≌△EPB(AAS),
∴EF=EB(全等三角形对应边相等);

(3)连接FB,设AB与EF交于点O,
在△AOF和△EOB中,
∠AFE=∠ABE
∠AOF=∠BOE(对顶角相等)

∴△AOF∽△EOB,
OA
OF
=
OE
OB

又∵∠AOE=∠FOB,
∴△AOE∽△FOB,
∴∠CAB=∠EFB,
∵∠FEB=∠ABC,
∴△ACB∽△FBE,
EF
EB
=
AB
BC
=
1
k
点评:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,平行线的性质,综合性较强,对同学们的图形识别能力有较高的要求,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式.
(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

8、△ABC与平行四边形DEFG如图放置,点D,G分别在边AB,AC上,点E,F在边BC上.已知BE=DE,CF=FG,则∠A的度数(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据
SAS
SAS
,易证△AFG≌
△AEF
△AEF
,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系
∠B+∠D=180°
∠B+∠D=180°
时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南开区二模)如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A、D,且AB=BD.
(1)求点A的坐标:
(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;
(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值
2
3
2
3
(直接写结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC和△ADE都是等腰直角三角形,其中∠ABC=∠ADE=90°,点M为EC的中点.

(1)如图,当点D,E分别在AC,AB上时,求证:△BMD为等腰直角三角形;
(2)如图,将图中的△ADE绕点A逆时针旋转45°,使点D落在AB上,此时问题(1)中的结论“△BMD为等腰直角三角形”还成立吗?请对你的结论加以证明.

查看答案和解析>>

同步练习册答案