精英家教网 > 初中数学 > 题目详情
已知:如图,抛物线y=ax2-5ax+b+
5
2
与直线y=
1
2
x+b交于点A(-3,0)、点B,与y轴精英家教网交于点C.
(1)求抛物线与直线的解析式;
(2)在直线AB上方的抛物线上有一点D,使得△DAB的面积是8,求点D的坐标;
(3)若点P是直线x=1上一点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
分析:(1)根据抛物线y=ax2-5ax+b+
5
2
与直线y=
1
2
x+b交于点A(-3,0),将A点的坐标值代入,首先确定b值,再确定出a值.进而得到抛物线与直线的解析式.
(2)假设点D的横坐标为t(-3<t<5),因为点D在抛物线y=ax2-5ax+b+
5
2
上,所以点D的纵坐标为-
1
6
t2+
5
6
t+4
.再过点D作y轴的平行线交AB于E.因而点D、点E的横坐标相同,且纵坐标可以通过直线AB的解析式表示出来.因而S△DAB就可以通过DE的距离(点D、E纵坐标的差值的绝对值)与点A、B横坐标的差值绝对值表示出来.
(3)存在符合条件的点P共有3个.因而分三类情形探求.
①以AB为腰且顶角为∠A:△P1AB;②以AB为腰且顶角为∠B:△P2AB;③以AB为底,顶角为∠P的△PAB有1个,即△P3AB.
综上得出符合条件的点.
解答:精英家教网解:(1)将A(-3,0)代入y=
1
2
x+b

y=ax2-5ax+b+
5
2

b=
3
2
,a=-
1
6

则抛物线解析式为y=-
1
6
x2+
5
6
x+4

直线AB的解析式为y=
1
2
x+
3
2

得:B(5,4),C(0,4);

(2)如图,设点D的横坐标为t(-3<t<5),
则点D的纵坐标为-
1
6
t2+
5
6
t+4
.过点D作y轴的平行线交AB于E,
∴点E的坐标为(t,
1
2
t+
3
2
)

DE=(-
1
6
t2+
5
6
t+4)-(
1
2
t+
3
2
)=-
1
6
t2+
1
3
t+
5
2

S△DAB=
1
2
×(-
1
6
t2+
1
3
t+
5
2
)×8=-
2
3
t2+
4
3
t+10=8

解得t1=-1,t2=3,
∴D1(-1,3),D2(3,5);

(3)存在符合条件的点P共有4个.以下分三类情形探求.
由A(-3,0),B(5,4),C(0,4),可得BC∥x轴,BC=AC,
设直线x=1与x轴交于N,与CB交于M,
过点B作BQ⊥x轴于Q,易得BQ=4,AQ=8,AN=4,BM=4,
①以AB为腰且顶角为∠A:△P1AB.
∴AB2=AQ2+BQ2=82+42=80,
在Rt△ANP1中,
P1N=
AP12-AN2
=
AB2-AN2
=
80-42
=8

∴P1(1,-8)或P1′(1,8),精英家教网
②以AB为腰且顶角为∠B:△P2AB.
在Rt△BMP2中,MP2=
BP22-BM2
=
AB2-BM2
=
80-42
=8

∴P2(1,-4)或P2′(1,12),
③以AB为底,顶角为∠P的△PAB有1个,即△P3AB.
画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C.
过点P3作P3K垂直y轴,垂足为K,显然Rt△P3CK∽Rt△BAQ.
P3K
CK
=
BQ
AQ
=
1
2

∵P3K=1,
∴CK=2,于是OK=2,
∴P3(1,2),
而P3(1,2)在线段AB上,构不成三角形,舍去.
综上,符合条件的点P共有4个,分别为:P1(1,-8),P1′(1,8),P2(1,-4),P2′(1,12).
点评:(1)考查的是用待定系数法求抛物线与直线的解析式.
(2)根据三角形的面积求动点坐标,主要是找到变化量、及不变量,进而得到动点坐标.
(3)是一道难度较大的二次函数题,综合考查了等腰三角形的性质,需根据三角形的顶点分类讨论,全面考虑点P所在位置的各种情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,精英家教网与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.
(1)求这条抛物线的解析式;
(2)求图象经过M、A两点的一次函数解析式;
(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案