精英家教网 > 初中数学 > 题目详情
精英家教网如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:△DEF为等边三角形.
分析:根据梯形的两腰平行和等腰梯形的性质证得CB=BD,然后证明∠BDE=60°,利用有一个角为60°的等腰三角形为等边三角形来证明等边三角形.
解答:证明:∵DC∥AB,AD=BC,∠A=60°,
∴∠A=∠ABC=60°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=
1
2
∠ABC=30°,
∵DC∥AB,
∴∠BDC=∠ABD=30°,
∴∠CDB=∠DBE
∴∠CBD=∠CDB,
∴CB=CD,
∵CF⊥BD,
∴F为BD的中点,
∵DE⊥AB,
∴DF=BF=EF,
由∠ABD=30°,得∠BDE=60°,
∴△DEF为等边三角形.
点评:本题考查了等腰梯形的性质及等边三角形的判定方法,等边三角形最常用的判定方法是有一个角是60°的等腰三角形是等边三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案