精英家教网 > 初中数学 > 题目详情
精英家教网如图,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD=
 
分析:根据勾股定理求出斜边AB;证明∠BCD=∠A,在△ABC中求cosA得解.
解答:解:∵CD是Rt△ABC斜边上的高,AC=4,BC=3,
∴AB=
32+42
=5.
∵∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠BCD=∠A.
∴cos∠BCD=cosA=
4
5
点评:本题利用了勾股定理及三角函数的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于
30
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,CD是Rt△ABC斜边上的高线,若sinA=
3
3
,BD=1,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,CD是Rt△ABC斜边上的高.若AB=5,AC=3,则tan∠BCD为(  )
A、
4
3
B、
3
4
C、
4
5
D、
3
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,CD是Rt△ABC斜边AB上的高,直角边AC=2
3
,现将△BCD沿CD折叠,B点恰好落在AB的中点E处,则阴影部分的面积等于
 

查看答案和解析>>

同步练习册答案