精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,∠B=45°,AC=4,则⊙O的半径为(  )
分析:首先作直径AD,连接CD,根据圆周角定理,易得△ACD是等腰直角三角形,继而根据等腰直角三角形的性质,即可求得答案.
解答:解:作直径AD,连接CD,
则∠ACD=90°,
∵∠B=45°,
∴∠D=∠B=45°,
∵AC=4,
∴AD=
AC
sin45°
=
2
AC=4
2

∴⊙O的半径为:2
2

故选A.
点评:此题考查了圆周角定理与等腰直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案