精英家教网 > 初中数学 > 题目详情

△ABC中,D、E分别是边AB与AC的中点,BC=4,下面四个结论:①DE=2;②△ADE∽△ABC;③△ADE的面积与△ABC的面积之比为 1:4;④△ADE的周长与△ABC的周长之比为 1:4;其中正确的有     .(只填序号)

①②③

解析分析:∵在△ABC中,D、E分别是AB、AC的中点,

∴DE∥BC,DE=BC=2。
∴△ADE∽△ABC。

∴△ADE的面积与△ABC的面积之比为 1:4,
△ADE的周长与△ABC的周长之比为 1:2,
故①②③正确,④错误。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

如图,在△ACM中,△ABC、△BDE和△DFG都是等边三角形,且点E、G在△ACM边CM上,设等边△ABC、△BDE和△DFG的面积分别为S1、S2、S3,若S1=9,S3=1,则S2=     

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为       cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

若线段a=4cm,b=9cm,则线段a,b的比例中项是        

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为   

查看答案和解析>>

科目:初中数学 来源: 题型:计算题

(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE//BC,AQ交DE于点P,求证:

(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证:MN=DM·EN

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

课本作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法。
我们有多种剪法,图1是其中的一种方法:
定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线。
(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=,试画出示意图,并求出所有可能的值;
(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.

(1)求线段CE的长;
(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;
(3)连结DF,
①当t取何值时,有?
②直接写出ΔCDF的外接圆与OA相切时t的值.

查看答案和解析>>

同步练习册答案