【题目】如图,C是
的一定点,D是弦AB上的一定点,P是弦CB上的一动点.连接DP,将线段PD绕点P顺时针旋转
得到线段
.射线
与
交于点Q.已知
,设P,C两点间的距离为xcm,P,D两点间的距离
,P,Q两点的距离为
.
![]()
小石根据学习函数的经验,分别对函数
,
,随自变量x的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了
,
,与x的几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 4.29 | 3.33 | 1.65 | 1.22 | 1.0 | 2.24 | |
| 0.88 | 2.84 | 3.57 | 4.04 | 4.17 | 3.20 | 0.98 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数据所对应的点
,
,并画出函数
,
的图象;
![]()
(3)结合函数图象,解决问题:连接DQ,当△DPQ为等腰三角形时,PC的长度约为_____cm.(结果保留一位小数)
【答案】(1)2.36;(2)见解析;(3)1.26或5.84
【解析】
(1)测量出PC=2cm时,PD的值,填入表格即可即可;
(2)根据表格数据描点,圆平滑曲线连接即可;
(3)由△DPQ是等腰三角形可得PD=PQ,即y1=y2,根据图象找出两个图象的交点,即可得x的值,即PC的大约长度.
(1)经过测量,当PC=2cm时,PD=2.36cm,
故答案为:2.36
(2)函数y1、y2的图象如图所示:
![]()
(3)∵△DPQ是等腰三角形,
∴PD=PQ,即y1=y2,
由图象可知:y1=y2时,x≈1.26或x≈5.84,
∴PC的长度约为1.26cm或5.84cm,
故答案为:1.26或5.84
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.
(1)求证:∠BAD+∠C=90°
(2)求线段AD的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
(3)直接写出当∠A为多少度时,△DEF是等边三角形.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC的顶点A的坐标为(0,1),点B的坐标为(1,2),∠ABC=90°,连接AC.
![]()
(1)求直线AC的函数表达式;
(2)点P是线段OC上一动点,从点O向点C运动,过点P作PM∥y轴,分别交AB或BC,AC于点M,N,其中点P的横坐标为m,MN的长为n.
①当0<m≤1时,求n与m之间的函数关系式;
②当△AMN的面积最大时,请直接写出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程.
已知:直线
及直线
外一点P.
![]()
求作:直线
,使
.
作法:如图,
![]()
①在直线
上取一点O,以点O为圆心,
长为半径画半圆,交直线
于
两点;
②连接
,以B为圆心,
长为半径画弧,交半圆于点Q;
③作直线
.
所以直线
就是所求作的直线.
根据小明设计的尺规作图过程:
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明
证明:连接
,
∵
,
∴
__________.
∴
(______________)(填推理的依据).
∴
(_____________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在家乡的楼顶上
处测得池塘的一端
处的俯角为
,测得池塘
处的俯角
,
、
、
三点在同一水平直线上.已知楼高
米,求池塘宽
为多少米?(参考数据:
,
,
,
,
,
,
.结果保留一位小数.)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数
(
).
(1)求出二次函数图象的对称轴;
(2)若该二次函数的图象经过点
,且整数
,
满足
,求二次函数的表达式;
(3)对于该二次函数图象上的两点
,
,设
,当
时,均有
,请结合图象,直接写出
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为
上一点,且
,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③
;④∠ACM+∠ANM=∠MOB;⑤AE=
MF.
其中正确结论的个数是( )
![]()
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com