精英家教网 > 初中数学 > 题目详情
(2009•本溪)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.

【答案】分析:(1)利用平移的性质画图,即对应点都移动相同的距离;
(2)利用旋转的性质画图,对应点都旋转相同的角度.然后利用弧长公式求点B经过(1)、(2)变换的路径总长.
解答:解:(1)连接AA1,然后从C点作AA1的平行线且A1C1=AC.

同理找到点B.

(2)画图正确.

(3)
弧B1B2的长=
点B所走的路径总长=
点评:本题主要考查了平移变换、旋转变换的相关知识,做这类题时,理解平移旋转的性质是关键.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2009•本溪)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前30天冲刺得分专练15:坐标与图形的位置及变换 (解析版) 题型:解答题

(2009•本溪)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省本溪市中考数学试卷(解析版) 题型:解答题

(2009•本溪)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前30天冲刺得分专练15:坐标与图形的位置及变换 (解析版) 题型:填空题

(2009•本溪)如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于   

查看答案和解析>>

同步练习册答案