精英家教网 > 初中数学 > 题目详情
精英家教网抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,1-m)在第二象限的抛物线上,求点D关于直线BC的对称点的坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求出点P的坐标.
分析:(1)由抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点,利用待定系数法即可求得抛物线的解析式;
(2)由点D(m,1-m)在抛物线y=-x2-3x+4上,即可求得点D的坐标,则可求得∠CBO的度数,然后过点D作DE⊥BC于E,延长DE交y轴于F,又由点F即为点D关于直线BC的对称点,即可求得点F的坐标;
(3)由∠CDB>90°,∠BCD=45°,可得点P在直线BC下方的抛物线上.然后在Rt△DCE中与Rt△BCO中,Rt△BDE中,由三角函数的知识求得∠PBO的正切值,然后过点P作PM⊥x轴于M,在Rt△BDE中,利用三角函数的知识即可求得点P的坐标.
解答:解:(1)抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点,
a+b-4a=0
-4a=4.
(1分)
解得
a=-1
b=-3.

∴此抛物线的解析式为y=-x2-3x+4.(2分)

(2)∵点D(m,1-m)在抛物线y=-x2-3x+4上,
∴-m2-3m+4=1-m,
解之,得m1=-3,m2=1.
∵点D在第二象限,
∴D(-3,4).(3分)
令y=-x2-3x+4=0,
得x1=1,x2=-4.
∴B(-4,0).
∴∠CBO=45°.
连接DC,精英家教网
易知DC∥BA,DC⊥CO,DC=3,
∴∠DCB=∠CBO=45°.
∴∠BCD=45°.
过点D作DE⊥BC于E,延长DE交y轴于F,
∴∠D=45°.
∴∠CFE=45°.
∴DE=CE=EF.
∴点F即为点D关于直线BC的对称点.(4分)
∴CD=CF=3.
∴F(0,1).(5分)

(3)∵∠CDB>90°,∠BCD=45°,
∴∠DBC<45°
∵∠DBP=45°,
∴点P在直线BC下方的抛物线上.
在Rt△DCE中,DC=3,∠DCE=45°,
∴DE=EC=
3
2
2

在Rt△BCO中,OB=OC=4,
∴BC=4
2

∴BE=
5
2
2

∴在Rt△BDE中,tan∠DBE=
3
5

∵∠DBP=∠CBO=45°,
∴∠DBC=∠PBO.(6分)
∴tan∠DBC=tan∠PBO=
3
5

过点P作PM⊥x轴于M,
∴在Rt△BDE中,tan∠PBO=
PM
BM
=
3
5

设PM=3t,则BM=5t,
∴OM=5t-4.
∴P(5t-4,3t).(7分)
∴-(5t-4)2-3(5t-4)+4=3t.
解得t1=0,t2=
22
25

∴P(
2
5
66
25
).(8分)
点评:此题考查了待定系数法求二次函数的解析式,点的对称性,直角三角形的性质以及三角函数的知识.此题综合性很强,难度较大,解题的关键是方程思想、转化思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知点(2,8)在抛物线y=ax2上,则a的值为(  )
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,以A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴的负半轴相交于D.
(1)若抛物线y=ax2+bx+c经过B、C、D三点,求此抛物线的解析式,并写出抛物线与圆A的另一个交点E的坐标;
(2)若动直线MN(MN∥x轴)从点D开始,以每秒1个长度单位的速度沿y轴的正方向移动,且与线段CD、y轴分别交于M、N两点,动点P同时从点C出发,在线段OC上以每秒2个长度单位的速度向原点O运动,连接PM,设运动时间为t秒,当t为何值时,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的条件下,若以P、C、M为顶点的三角形与△OCD相似,求实数t的值.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

若(2,0)、(4,0)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线(  )
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.
(1)求m的值和抛物线y=ax2+bx的解析式;
(2)如在线段OB上有一点C,满足OC=2CB,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是
等腰
等腰
三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

同步练习册答案