精英家教网 > 初中数学 > 题目详情
(2012•苏州)如图,已知第一象限内的图象是反比例函数y=
1
x
图象的一个分支,第二象限内的图象是反比例函数y=-
2
x
图象的一个分支,在x轴的上方有一条平行于x轴的直线l与它们分别交于点A、B,过点A、B作x轴的垂线,垂足分别为C、D.若四边形ABCD的周长为8且AB<AC,则点A的坐标为
1
3
,3)
1
3
,3)
分析:设A点坐标为(a,
1
a
),利用AB平行于x轴,点B的纵坐标为
1
a
,而点B在反比例函数y=-
2
x
图象上,易得B点坐标为(-2a,
1
a
),则AB=a-(-2a)=3a,AC=
1
a
,然后根据矩形的性质得到
AB+AC=4,即3a+
1
a
=4,则3a2-4a+1=0,用因式分解法解得a1=
1
3
,a2=1,而AB<AC,则a=
1
3
,即可写出A点坐标.
解答:解:点A在反比例函数y=
1
x
图象上,设A点坐标为(a,
1
a
),
∵AB平行于x轴,
∴点B的纵坐标为
1
a

而点B在反比例函数y=-
2
x
图象上,
∴B点的横坐标=-2×a=-2a,即B点坐标为(-2a,
1
a
),
∴AB=a-(-2a)=3a,AC=
1
a

∵四边形ABCD的周长为8,而四边形ABCD为矩形,
∴AB+AC=4,即3a+
1
a
=4,
整理得,3a2-4a+1=0,(3a-1)(a-1)=0,
∴a1=
1
3
,a2=1,
而AB<AC,
∴a=
1
3

∴A点坐标为(
1
3
,3).
故答案为(
1
3
,3).
点评:本题考查了反比例函数综合题:点在反比例函数图象上,点的横纵坐标满足其解析式;利用矩形对边相等的性质建立方程以及用因式分解法解一元二次方程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•苏州)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•苏州)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.
(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;
(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;
(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•苏州)如图,已知抛物线y=
1
4
x2-
1
4
(b+1)x+
b
4
(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
(1)点B的坐标为
(b,0)
(b,0)
,点C的坐标为
(0,
b
4
(0,
b
4
(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•苏州)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:
3
≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为
11.0
11.0
米;
(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•苏州)如图,已知BD是⊙O的直径,点A、C在⊙O上,
AB
=
BC
,∠AOB=60°,则∠BDC的度数是(  )

查看答案和解析>>

同步练习册答案