精英家教网 > 初中数学 > 题目详情

如图,△ABC和△关于直线m对称.

(1)结合图形指出对称点.

(2)连接A、,直线m与线段AA′有什么关系?

(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.

答案:
解析:

  解:(1)对称点有A和A',B和B',C和C'.

  (2)连接A、A′,直线m是线段AA′的垂直平分线.

  (3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心。重心有很多美妙的性质,如在关线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题。请你利用重心的概念完成如下问题:

(1)若O是△ABC的重心(如图1),连结AO并延长交BCD,证明:

(2)若AD是△ABC的一条中线(如图2),OAD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;

(3)若O是△ABC的重心,过O的一条直线分别与ABAC相交于GH(均不与△ABC的顶点重合)(如图3),S四边形BCHG.S△AGH分别表示四边形BCHG和△AGH的面积,试探究的最大值。

 


查看答案和解析>>

科目:初中数学 来源: 题型:

如图,ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关

A. EF>BE+CF   B. EF=BE+CF   C. EF<BE+CF   D. 不能确定 (    )

查看答案和解析>>

同步练习册答案