精英家教网 > 初中数学 > 题目详情
已知:E是边长为1的正方形ABCD对角线BD上一动点,点E从D点向B点运动(与点B、D不重合),过点E的直线MN平行于DC,交AD于点M,交BC于点N,EF⊥AE于点E,交CB(或CB的延长线)于点F.
(1)如图甲,线段EM与FN之间有怎样的大小关系?请证明你的结论.
(2)点E在运动的过程中(图甲、图乙),四边形AFNM的面积是否发生变化?请说明理由.
分析:(1)根据四边形ABCD是正方形,BD是对角线,且MN∥DC,求证△MED和△NBE都是等腰直角三角形,又利用EF⊥AE,可得∠EFN=∠AEM,然后即可求证△AME≌△ENF,得出EM和FN的之间的关系;
(2)分两种情况进行讨论:①当点E运动到BD的中点时,利用四边形AFHG是矩形,可得S四边形AFNM=
1
2
;②当点E不在BD的中点时,点E在运动(与点B、D不重合)的过程中,四边形AFNM是直角梯形.由图甲知,△AME≌△ENF,同理,图乙知,△AME≌△ENF,可得,S四边形AFNM=
1
2
(AM+FN)•MN=
1
2
×1×1=
1
2
,然后即可得出结论.
解答:解:(1)EM=FN
证明如下:
∵四边形ABCD是正方形,BD是对角线,且MN∥DC,
∴四边形AMNB和四边形MNCD都是矩形,∠MDE=45°,∠NBE=45°,
∴△MED和△NBE都是等腰直角三角形.
∴∠AME=∠ENF=90°,AM=BN=NE.
∴∠EFN+∠FEN=90°,
又∵EF⊥AE,
∴∠AEM+∠FEN=90°,
∴∠EFN=∠AEM,
∴△AME≌△ENF.
∴EM=FN
(2)四边形AFNM的面积没有发生变化,
①当点E运动到BD中点时,
四边形AFNM是矩形,S四边形AFNM=
1
2

②当点E不在BD的中点时,点E在运动(与点B、D不重合)的过程中,
四边形AFNM是直角梯形.
由(1)知,在图甲中,△AME≌△ENF.
同理,在图乙中,△AME≌△ENF.
∴ME=FN,AM=EN,
∴AM+FN=MN=DC=1,
不论在图甲或图乙中,这时S四边形AFNM=
1
2
(AM+FN)•MN=
1
2
×1×1=
1
2

综合①、②可知四边形AFNM的面积是一个定值.
点评:此题主要考查正方形的性质,全等三角形的判定与性质等知识点的理解和掌握,此题有一定的拔高难度,属于难题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:△ABC是边长为1的等边三角形,D是射线BC上一动点(与点B、C不重合),以AD为一边向右侧作等边△ADE,连接CE.
(1)当点D在线段BC上运动时(如图1),求证:①EC=DB;②EC∥AB;
(2)当点D在线段BC的延长线上运动时(如图2),②中的结精英家教网论是否仍然成立?请说明理由;
(3)当EC=2时,求△ABC与△ADE的面积比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某剧院舞台上的照明灯P射出的光线成“锥体”,其“锥体”面图的“锥角”是60°.已知舞台ABCD是边长为6m的正方形.要使灯光能照射到整个舞台,则灯P的悬挂高度是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•株洲)已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)若∠EOD=30°,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点P是边长为2的正三角形ABC的中线AD上的动点,E是AC边的中点,则PC+PE的最小值是
3
3

查看答案和解析>>

同步练习册答案