精英家教网 > 初中数学 > 题目详情

如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O.
(1)求证:△ABF≌△CAE;
(2)HD平分∠AHC吗?为什么?

(1)证明:∵ABCD为菱形,
∴AB=BC.
∵AB=AC,
∴△ABC为等边三角形,
∴∠B=∠CAB=60°,
在△ABF和△CAE中,
∴△ABF≌△CAE(SAS);

(2)答:HD平分∠AHC.
理由如下:过点D作DG⊥CH于点G,作DK⊥FA交FA的延长线于点K,
∵△ABF≌△CAE,
∴∠BAF=∠CAE,
∵∠BAF+∠CAF=60°,
∴∠CAE+∠CAF=60°,
∴∠AHC=120°,
∵∠ADC=60°,
∴∠HAD+∠HCD=180°,
∵∠HAD+∠KAD=180°,
∴∠HCD=∠KAD,
在△ADK和△CDG中,
∴△ADK≌△CDG(AAS),
∴DK=DG,
∵DG⊥CH,DK⊥FA,
∴HD平分∠AHC.
分析:(1)根据菱形的四条边都相等可得AB=BC,然后求出△ABC是等边三角形,根据等边三角形的性质可得∠B=∠CAB=60°,然后利用“边角边”证明△ABF和△CAE全等即可;
(2)过点D作DG⊥CH于点G,作DK⊥FA交FA的延长线于点K,根据全等三角形对应角相等可得∠BAF=∠CAE,然后求出∠AHC=120°,再根据四边形的内角和定理求出∠HAD+∠HCD=180°,根据平角的定义求出∠HAD+∠KAD=180°,从而得到∠HCD=∠KAD,然后利用“角角边”证明△ADK和△CDG全等,根据全等三角形对应边相等可得DK=DG,然后利用到角的两边距离相等的点在角的平分线上证明即可.
点评:本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,难度较大,(2)作辅助线构造出全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD中,∠A=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿B→C→D向终点D运动.同时动点Q从点A出发,以相同的速度沿A→D→B向终点B运动,运动的时间为x秒,当点P到达点D时,点P、Q同时停止运动,设△APQ的面积为y,则反映y与x的函数关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长为2
3
,则PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:菱形ABCD中,E是AB的中点,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度数;
(2)对角线BD的长;
(3)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的长.
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案