精英家教网 > 初中数学 > 题目详情
△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE。
(1)如图(a)所示,当点D在线段BC上时。
 ①求证:△AEB≌△ADC;
 ②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由。
证明:
(1)①
∵△ABC和△ADE都是等边三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°。
又∵∠EAB=∠EAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,
∴∠EAB=∠DAC,
∴△AEB≌△ADC。
②方法一:由①得△AEB≌△ADC,
∴∠ABE=∠C=60°,
又∵∠BAC=∠C=60°,
∴∠ABE=∠BAC,
∴EB∥GC。
又∵EG∥BC,
∴四边形BCGE是平行四边形。
方法二:证出△AEG≌△ADB,得EG=AB=BC。
由①得△AEB≌△ADC.得BE=CG。
∴四边形BCGE是平行四边形。
(2)①②都成立。
(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形。
理由:方法一:由①得△AEB≌△ADC,
∴BE=CD,
又∵CD=CB,
∴BE=CB。由②得四边形BCGE是平行四边形,
∴四边形BCGE是菱形。
方法二:由①得△AEB≌△ADC,
∴BE=CD。
又∵四边形BCGE是菱形,
∴BE=CB
∴CD=CB。
方法三:
∵四边形BCGE是平行四边形,
∴BE∥CG,EG∥BC,
∴∠FBE=∠BAC=60°,∠F=∠ABC=60°
∴∠F=∠FBE=60°,
∴△BEF是等边三角形.
又∵AB=BC,四边形BCGE是菱形,
∴AB=BE=BF,
∴AE⊥FG
∴∠EAG=30°,
∵∠EAD=60°,
∴∠CAD=30°。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知a、b、c是△ABC的三条边长,若x=-1为关于x的一元二次方程(c-b)x2-2(b-a)x+(a-b)=0的根.
(1)△ABC是等腰三角形吗?△ABC是等边三角形吗?请写出你的结论并证明;
(2)若代数式子
a-2
+
2-a
有意义,且b为方程y2-8y+15=0的根,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC是等边三角形,D、E分别是BC、CA上的点,且BD=CE.
(1)求证:AD=BE;(2)求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,
(1)用直尺和圆规作边BC的高线AD交BC于点D(保留作图痕迹,不要求写作法);
(2)若△ABC的边长为2,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•裕华区二模)已知,如图△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让△ABC在BC所在的直线l上向左平移.当点B与点E重合时,点A恰好落在三角板的斜边DF上的M点,点C在N点位置上(假定AB、AC与三角板斜边的交点为G、H)
问:(1)在△ABC平移过程中,通过测量CH、CF的长度,猜想CH、CF满足的数量关系;
(2)在△ABC平移过程中,通过测量BE、AH的长度,猜想BE.AH满足的数量关系;
(3)证明(2)中你的猜想.(证明不得含有图中未标示的字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB=AC,若要使△ABC是等边三角形,那么需添加一个条件:
AB=BC
AB=BC
∠A=60°
∠A=60°
(从不同角度填空).

查看答案和解析>>

同步练习册答案