精英家教网 > 初中数学 > 题目详情
(2010•莱芜)在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.
(1)求线段AD的长度;
(2)点E是线段AC上的一点,试问当点E在什么位置时,直线ED与⊙O相切?请说明理由.

【答案】分析:(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.
(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.
解答:解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;(1分)
连接CD,∵BC为直径,
∴∠ADC=∠BDC=90°;
∵∠A=∠A,∠ADC=∠ACB,
∴Rt△ADC∽Rt△ACB;
,∴;(3分)

(2)当点E是AC的中点时,ED与⊙O相切;
证明:连接OD,
∵DE是Rt△ADC的中线;
∴ED=EC,
∴∠EDC=∠ECD;
∵OC=OD,
∴∠ODC=∠OCD;
∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;
∴ED⊥OD,
∴ED与⊙O相切.
点评:此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《函数基础知识》(02)(解析版) 题型:选择题

(2010•莱芜)在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论不正确的是( )

A.甲先到达终点
B.前30分钟,甲在乙的前面
C.第48分钟时,两人第一次相遇
D.这次比赛的全程是28千米

查看答案和解析>>

科目:初中数学 来源:2010年山东省莱芜市中考数学试卷(解析版) 题型:选择题

(2010•莱芜)在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论不正确的是( )

A.甲先到达终点
B.前30分钟,甲在乙的前面
C.第48分钟时,两人第一次相遇
D.这次比赛的全程是28千米

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《图形的旋转》(03)(解析版) 题型:填空题

(2010•莱芜)在平面直角坐标系中,以点A(4,3)、B(0,0)、C(8,0)为顶点的三角形向上平移3个单位,得到△A1B1C1(点A1、B1、C1分别为点A、B、C的对应点),然后以点C1为中心将△A1B1C1顺时针旋转90°,得到△A2B2C1(点A2、B2分别是点A1、B1的对应点),则点A2的坐标是   

查看答案和解析>>

科目:初中数学 来源:2010年山东省莱芜市中考数学试卷(解析版) 题型:解答题

(2010•莱芜)在□ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连接EG、GF、FH、HE.

(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是______;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是______;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.

查看答案和解析>>

同步练习册答案