精英家教网 > 初中数学 > 题目详情
某市要在一块矩形的空地上建造一个四边形花园,要求花园所占面积是矩形面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在矩形的四条边上,请你设计两种方案:
方案1:如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;
方案2:如图2所示,一个出入口M已确定,请在图2上画出符合条件的平行四边形花园,并简要说明画法.
精英家教网
分析:(1)在AD上截取AG=BE,连接EG,则EG把矩形ABCD分成两个矩形,在AB上任取一点H,顺次连接E、F、G、H四点即可得到符合要求的四边形;
(2)在AD上截取DP=BM,连接MP,再作出MP的中点O,过O通过作角相等作ON∥BC交CD于点N,交AB于点Q,则顺次连接M、N、P、Q即可得到符合要求的平行四边形.
解答:解:(1)如图,作法:①在AD,BC上截取AG=BE,连接EG,
②在AB上任取一点H,
③连接EF,FG,GH,HE,得到四边形EFGH,
所以四边形EFGH就是所要求作的四边形.
理由:因为ABCD是矩形,EG把矩形ABCD分成矩形ABEG与矩形ECDG,
则S△EFG=
1
2
S矩形ECDG,S△EGH=
1
2
S矩形ABEG
∴S四边形EFGH=
1
2
S四边形ABCD精英家教网

(2)画法:①在AD,BC上截取AP=CM,连接MP,
②作MP的垂直平分线,得到MP的中点O,
③作∠PON=∠PMC交CD于点N,反向延长ON,交AB于点Q,连接MN、MP、PQ、QM,得到四边形MNPQ,
所以四边形MNPQ就是所要求作的平行四边形.
理由如下:∵∠PON=∠PMC,
∴QN∥BC,
∵点O是MP的中点,
∴点Q、点N分别是AB、CD的中点,
∴OQ=
1
2
(BM+AP)=
1
2
AD,NO=
1
2
(MC+DP)=
1
2
BC,
∴OQ=NO,
∴四边形MNPQ是平行四边形(对角线互相平分的四边形是平行四边形),
因为ABCD是矩形,QN把矩形ABCD分成矩形AQND与矩形BCNQ,
则S△PQM=
1
2
S矩形AQND,S△EQMN=
1
2
S矩形BCNQ
∴S四边形MNPQ=
1
2
S四边形ABCD
点评:本题考查了应用与设计作图,主要利用矩形的面积等于以矩形的一边为底边,另一顶点在对边上的三角形的面积等于矩形的面积的一半的性质,灵活性较强,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.
(1)求y与x的函数关系式,并求自变量x的取值范围;
(2)生物园的面积能否达到210平方米?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,东梅中学要在教学楼后面的空地上用30米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的一边为x,面积为y.
(1)求y与x的函数关系式,并求自变量x的取值范围;
(2)生物园的面积能否达到120平方米?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,东梅中学要在教学楼后面的空地上用20米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.怎样围成一个面积为50m2的矩形地块生物园?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某市要在一块矩形的空地上建造一个四边形花园,要求花园所占面积是矩形面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在矩形的四条边上,请你设计两种方案:
方案1:如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;
方案2:如图2所示,一个出入口M已确定,请在图2上画出符合条件的平行四边形花园,并简要说明画法.

查看答案和解析>>

同步练习册答案