精英家教网 > 初中数学 > 题目详情
在锐角△ABC中,BC=6,∠A=60°,则△ABC外接圆的直径为
4
3
4
3
分析:首先根据题意作出图形,然后作直径BD,连接CD,由直径所对的圆周角是直角,可得∠BCD=90°,又由圆周角定理可得∠D=∠A=60°,然后由三角函数的知识求得答案.
解答:解:如图,作直径BD,连接CD,
∴∠BCD=90°,
∵∠D=∠A=60°,BC=6,
∴BD=
BC
sin∠D
=
6
3
2
=4
3

故答案为:4
3
点评:此题考查了三角形的外接圆的性质、圆周角定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在锐角△ABC中,a、b、c分别表示为∠A、∠B、∠C的对边,O为其外心,则O点到三边的距离之比为(  )
A、a:b:c
B、
1
a
1
b
1
c
C、cosA:cosB:cosC
D、sinA:sinB:sinC

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B<60°(如图).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在锐角△ABC中,∠BAC=60°,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①B、E、D、C四点共圆;②AD•AC=AE•AB;③△DEF是等边三角形;④当∠ABC=45°时,BE=
2
DE中,一定正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南开区一模)在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD,则以下结论中一定正确的个数有(  )
①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

在锐角△ABC中,已知
cosA-
1
2
+|tanB-
3
|=0
,且AB=4,则△ABC的面积等于(  )

查看答案和解析>>

同步练习册答案