精英家教网 > 高中数学 > 题目详情
数列{an}满足 an=2an-1+2n+1(n∈N,n≥2),a3=27.
(Ⅰ)求a1,a2的值;
(Ⅱ)记,是否存在一个实数t,使数列{bn}为等差数列?若存在,求出实数t;若不存在,请说明理由;
(Ⅲ)求数列{an}的前n项和Sn
【答案】分析:(Ⅰ)利用an=2an-1+2n+1(n∈N,n≥2),a3=27,代入可求;(Ⅱ)假设存在实数t,使得{bn}为等差数列,从而有2bn=bn-1+bn+1,.故可求;(Ⅲ)先求出数列的通项,再求和.
解答:解:(Ⅰ)由a3=27,27=2a2+23+1----------(1分)∴a2=9----------(2分)
∴9=2a1+22+1∴a1=2------------(3分)
(Ⅱ)假设存在实数t,使得{bn}为等差数列.
则2bn=bn-1+bn+1------------(4分)∴
∴4an=4an-1+an+1+t------------(5分)∴∴t=1------------(6分)
存在t=1,使得数列{bn}为等差数列.------------(7分)
(Ⅲ)由(1)、(2)知:------------(8分)
又{bn}为等差数列.------------(9分)
∴Sn=3×2-1+5×21-1+7×22-1+…+(2n+1)×2n-1-1=3+5×2+7×22+…+(2n+1)×2n-1-n
∴2Sn=3×2+5×22+7×23+…+(2n+1)×2n-2n∴-Sn=3+2×2+2×22+2×23+…+2×2n-1-(2n+1)×2n+n----------(11分)=
=(1-2n)×2n+n-1Sn=(2n-1)×2n-n+1------------(13分)
点评:本题考查数列的通项公式的求法,存在性问题的求解,同时考查错位相减法求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}满足a 1=
3
2
,a n+1=
a
2
n
-an+1
(n∈N*),则m=
1
a1
+
1
a2
+
1
a3
+…+
1
a2012
的整数部分是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足
a
 
1
=P(0<P<1),且
a
 
n+1
=
a
 
n
a
 
n
+1

(1)求数列的通项an
(2)求证:
a
 
1
2
+
a
 
2
3
+
a
 
3
4
+…+
a
 
n
n+1
<1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•三明模拟)若数列{an}满足a≤an≤b,其中a、b是常数,则称数列{an}为有界数列,a是数列{an}的下界,b是数列{an}的上界.现要在区间[-1,2)中取出20个数构成有界数列{bn},并使数列{bn}有且仅有两项差的绝对值小于
1
m
,那么正数m的最小取值是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省吉安市安福中学高一(下)第二次月考数学试卷(课改班)(解析版) 题型:选择题

数列{an}满足a,a(n∈N*),则m=的整数部分是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源:2013年福建省三明市高三质量检查数学试卷(解析版) 题型:选择题

若数列{an}满足a≤an≤b,其中a、b是常数,则称数列{an}为有界数列,a是数列{an}的下界,b是数列{an}的上界.现要在区间[-1,2)中取出20个数构成有界数列{bn},并使数列{bn}有且仅有两项差的绝对值小于,那么正数m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步练习册答案