精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1中,BC=2,BC1=,CC1=,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC1B1,E为棱AB的中点,F为CC1上的动点.
(Ⅰ)在线段CC1上是否存在一点F,使得EF∥平面A1BC1?若存在,确定其位置;若不存在,说明理由.
(Ⅱ)在线段CC1上是否存在一点F,使得EF⊥BB1?若存在,确定其位置;若不存在,说明理由.
( III)当F为CC1的中点时,若AC≤CC1,且EF与平面ACC1A1所成的角的正弦值为,求二面角C-AA1-B的余弦值.

【答案】分析:(I)存在,中点,利用线面平行的判定定理可得结论;
(Ⅱ)存在,当F在靠端点C1一侧的四等分点时.
(III)建立空间直角坐标系,确定平面ACC1A1、平面AA1B的一个法向量,利用向量的夹角公式,即可得到结论.
解答:解:(I)存在,中点.
取A1B的中点D,连接ED,DC1,则ED∥AA1,ED=AA1
∵F为CC1上的动点,∴ED∥FC1,ED=FC1
∴四边形DEFC1是平行四边形
∴EF∥DC1
∴EF?平面A1BC1,DC1?平面A1BC1
∴EF∥平面A1BC1
(Ⅱ)存在,当F在靠端点C1一侧的四等分点时.
(III)建立如图所示的空间直角坐标系,设平面ACC1A1的一个法向量为

,令z1=1,则

=…(6分)
解得b=1,或
∵AC≤CC1∴b=1

同理可求得平面AA1B的一个法向量
=
又二面角C-AA1-B为锐二面角,故余弦值为
点评:本题考查线面平行,考查面面角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案