精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+b•x2的图象过点(1,0)
(I)求f(x)的解析式;
(Ⅱ)若f(x)≥
t
x
-1nx(t
为实数)恒成立,求t的取值范围;
(Ⅲ)当m>0时,讨论F(x)=f(x)+
x2
2
-
m2+1
m
x
在区间(0,2)上极值点的个数.
(I)∵函数f(x)=1nx+b•x2的图象过点(1,0),
∴0=ln1+b•12,解得b=0,∴f(x)的解析式为f(x)=1nx;
(Ⅱ)f(x)≥
t
x
-1nx
恒成立,即lnx≥
t
x
-1nx
,由x>0可得t≤2xlnx,
构造函数h(x)=2xlnx,x>0,只需t≤hmin(x)即可,
可得h′(x)=2(lnx-1),故当x∈(0,
1
e
)时,h′(x)<0,h(x)为减函数,
当x∈(
1
e
,+∞)时,h′(x)>0,h(x)为增函数,
故hmin(x)=h(
1
e
)=-
2
e
,故t≤-
2
e

(Ⅲ)由(I)知,f(x)=1nx,F(x)=lnx+
x2
2
-
m2+1
m
x
,(x>0)
F′(x)=
1
x
+x-
m2+1
m
=
(x-m)(x-
1
m
)
x
,令其为0可得x=m,或x=
1
m

(1)当m=
1
m
时,m=1,F′(x)>0,函数在(0,2)为增函数,无极值点;
(2)当
0<m<2
0<
1
m
<2
,且m<
1
m
,即
1
2
<m<1时,可知函数有两个极值点;
(3)当
0<m<2
1
m
>2
,或
m>2
0<
1
m
<2
,即0<m<
1
2
,或m>2时,可知函数有一个极值点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案