【题目】已知抛物线
,过焦点
作垂直于
轴的直线
,
与抛物线
相交于
,
两点,
为
的准线上一点,且
的面积为4.
(1)求抛物线
的标准方程.
(2)设
,若点
是抛物线
上的任一动点,则是否存在垂直于
轴的定直线被以
为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角105°的方向,以9海里/时的速度向某小岛B靠拢,我海军舰艇立即以21海里/时的速度前去营救,恰在小岛B处追上渔船.
(1)试问舰艇应按照怎样的航向前进?
(2)求出舰艇靠近渔船所用的时间?
(参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产一种产品,根据经验,其次品率Q与日产量x(万件)之间满足关系,
,已知每生产1万件合格的产品盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如
表示每生产10件产品,有1件次品,其余为合格品).
(1)试将生产这种产品每天的盈利额
(万元)表示为日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】研究变量
得到一组样本数据,进行回归分析,有以下结论
①残差图中残差点所在的水平带状区域越窄,则回归方程的预报精确度越高;
②用相关指数
来刻画回归效果,
越小说明拟合效果越好;
③在回归直线方程
中,当变量
每增加1个单位时,变量
就增加2个单位
④若变量
和
之间的相关系数为
,则变量
和
之间的负相关很强
以上正确说法的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小组共有
五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)
如下表所示:
A | B | C | D | E | |
身高 | 1.69 | 1.73 | 1.75 | 1.79 | 1.82 |
体重指标 | 19.2 | 25.1 | 18.5 | 23.3 | 20.9 |
(Ⅰ)从该小组身高低于
的同学中任选
人,求选到的
人身高都在
以下的概率
(Ⅱ)从该小组同学中任选
人,求选到的
人的身高都在
以上且体重指标都在
中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A是椭圆
的左顶点,点P,Q在椭圆上且均在x轴上方.
![]()
(1)若直线AP与OP垂直,求点P的坐标;
(2)若直线AP,AQ的斜率之积为
,求直线PQ的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com