(本题满分12分)如图,四棱锥P—ABCD中,PA⊥ABCD,四边形ABCD 是矩形. E、F分别是AB、PD的中点.若PA=AD=3,CD=
. (1)求证:AF//平面PCE;
(2)求点A到平面PCE的距离;(3)求直线FC与平面PCE所成角的大小。
(2)
(3)![]()
:解法一:(1)取PC的中点G,连结EG,FG,又由F为PD中点,则FG//![]()
| |
|
|
(2)由(1)知点A到平面PCE的距离等于点F到
平面PCE的距离,所以只要求出点F到平面PCE的距离即可。
![]()
![]()
![]()
![]()
![]()
又已知得:
.
.
.
.
8分
(3)由(2)知![]()
![]()
12分
解法二:如图建立空间直角坐标系
,A(0,0,0),P(0,0,3),D(0,3,0),E(
,0,0),F(0,
,
),C(
,3,0) 2分
|
,![]()
即
,又![]()
4分
(2)设平面
的法向量
.
,取![]()
又
,故
到平面
的距离为
8分
(3)
![]()
直线FC与平面PCE所成角的大小为
. 12分
科目:高中数学 来源:2014届江西高安中学高二上期末考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)
如图所示的几何体是由以正三角形
为底面的直棱柱被平面
所截而得.
,
为
的中点.
![]()
(1)当
时,求平面
与平面
的夹角的余弦值;
(2)当
为何值时,在棱
上存在点
,使
平面
?
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考理科数学试卷(解析版) 题型:解答题
(本题满分12分)如图,在长方体
中,已知上下两底面为正方形,且边长均为1;侧棱
,为
中点,
为
中点,
为
上一个动点.
![]()
(Ⅰ)确定
点的位置,使得
;
(Ⅱ)当
时,求二面角
的平
面角余弦值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广西桂林中学高三7月月考试题理科数学 题型:解答题
(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.
![]()
⑴求异面直线PD与AE所成角的大小;
⑵求证:EF⊥平面PBC ;
⑶求二面角F—PC—B的大小..
查看答案和解析>>
科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题
(本题满分12分)
如图3,在圆锥
中,已知
的直径
的中点.
(I)证明:![]()
(II)求直线和平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源:2010年海南省高三五校联考数学(文) 题型:解答题
(本题满分12分)
如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。
(1)求证:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com