精英家教网 > 高中数学 > 题目详情
已知向量
a
=(cos
3x
2
,sin
3x
2
)
b
=(cos
x
2
,-sin
x
2
)
,且x∈[0,
π
2
]

(1)求|
a
+
b
|
并判断x为何值时
a
b

(2)若f(x)=
a
b
-2λ|
a
+
b
|
的最小值是-
3
2
,求λ的值.
分析:(1)先求出
a
+
b
 的坐标,从而求出|
a
+
b
|
的值,从而求得|
a
+
b
|
=2cosx.再由
a
b
=cos2x
,求出
a
b
时x的值.
(2)化简函数f(x)的解析式为2(cosx-λ)2-1-2λ2,分λ<0、0≤λ≤1、λ>1三种情况,根据函数的最小值等于-
3
2
分必然求出λ的值.
解答:解:(1)∵
a
+
b
=( cos
3x
2
+cos
x
2
,sin 
3x
2
-sin
x
2
 ),故 |
a
+
b
|
2=2+2cos2x=4cos2x.
因为x∈[0,
π
2
]
,所以|
a
+
b
|
=2cosx. 再由
a
b
=cos2x

a
b
,则
a
b
=0
,所以x=
π
4
时,
a
b

(2)∵f(x)=
a
b
-2λ|
a
+
b
|
=2(cosx-λ)2-1-2λ2
因为x∈[0,
π
2
]
,所以cosx∈[0,1].
讨论:若λ<0时,f(x)min=-1,矛盾.
若0≤λ≤1时,f(x)min=-1-2λ2=-
3
2
,解得λ=
1
2

若λ>1时,f(x)min=1-4λ=-
3
2
,解得λ=
5
8
,矛盾.
综合可得 λ=
1
2
点评:本题主要考查两个向量数量积公式的应用,余弦函数的定义域和值域,求二次函数在闭区间上的最值,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(-cosα,1+sinα)
b
=(2sin2
α
2
,sinα)

(Ⅰ)若|
a
+
b
|=
3
,求sin2α的值;
(Ⅱ)设
c
=(cosα,2)
,求(
a
+
c
)•
b
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx-sinωx,sinωx)
b
=(-cosωx-sinωx,2
3
cosωx)
,其中ω>0,且函数f(x)=
a
b
(λ为常数)的最小正周期为π.
(Ⅰ)求函数y=f(x)的图象的对称轴;
(Ⅱ)若函数y=f(x)的图象经过点(
π
4
,0)
,求函数y=f(x)在区间[0,
12
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
θ
2
,sin
θ
2
)
b
=(2,1)
,且
a
b

(1)求tanθ的值;
(2 )求
cos2θ
2
cos(
π
4
+θ)•sinθ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos(ωx-
π
6
),  sin(ωx-
π
4
)),  
b
=(sin(
2
3
π-ωx), sin(ωx+
π
4
))
(其中ω>0).若函数f(x)=2
a
b
-1
的图象相邻对称轴间距离为
π
2

(Ⅰ)求ω的值;
(Ⅱ)求f(x)在[-
π
12
,  
π
2
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),
b=
(cos2θ-1,sin2θ),
c
=(cos2θ,sin2θ-
3
)
.其中θ≠kπ,k∈Z.
(1)求证:
a
b

(2)设f(θ)=
a
c
,且θ∈(0,π),求f(θ)
的值域.

查看答案和解析>>

同步练习册答案