精英家教网 > 高中数学 > 题目详情
已知函数
(1)求函数f(x)的单调区间.
(2)设P为函数f(x)图象上的一点,以线段OP为母线绕x轴旋转得到几何体M,求几何体M的体积的最大值.
(3)如果0<x1<x2,且f(x1)=f(x2),试比较f(x2)与f(2-x1)的大小.
【答案】分析:(1)求导函数,利用导数的正负,可得函数的单调区间;
(2)表示出几何体M的体积,利用导数,确定函数的单调性,可得结论;
(3)确定0<x1<1<x2,2-x1>1,分类讨论,可得结论.
解答:解:(1)求导函数,可得
令f′(x)>0,可得0<x<1;令f′(x)>0,可得x>1,
∴函数的单调递增区间是(0,1),单调递减区间是(1,+∞);
(2)几何体M的体积V=(x>0)
∴V′=
∴x∈(0,9)时,V′>0,函数单调递增;x∈(9,+∞)时,V′<0,函数单调递减,
∴x=9时,V取得最大值,最大值为
(3)∵0<x1<x2,且f(x1)=f(x2),函数的单调递增区间是(0,1),单调递减区间是(1,+∞),
∴0<x1<1<x2
∴2-x1>1
若1<x2<2-x1,则f(x2)>f(2-x1);若x2>2-x1>1,则f(x2)<f(2-x1).
点评:本题考查导数知识的运用,考查函数的单调性,考查大小比较,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象和y轴交于(0,1)且y轴右侧的第一个最大值、最小值点分别为P(x0,2)和Q(x0+3π,-2).
(1)求函数y=f(x)的解析式及x0
(2)求函数y=f(x)的单调递减区间;
(3)如果将y=f(x)图象上所有点的横坐标缩短到原来的
1
3
(纵坐标不变),然后再将所得图象沿x轴负方向平移
π
3
个单位,最后将y=f(x)图象上所有点的纵坐标缩短到原来的
1
2
(横坐标不变)得到函数y=g(x)的图象,写出函数y=g(x)的解析式并给出y=|g(x)|的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
时取得最大值4.
(1)求函数f(x)的最小正周期及解析式;
(2)求函数f(x)的单调增区间;
(3)求函数f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数 (1)求函数在区间[1,]上的最大值、最小值;

(2)求证:在区间(1,)上,函数图象在函数图象的下方;

(3)设函数,求证:。(

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省仙桃一中高三(上)第二次段考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求函数f(x)的最小正周期和最小值;
(2)在给出的直角坐标系中,用描点法画出函数y=f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省枣庄市高三上学期期末检测理科数学 题型:解答题

(本题满分12分)

已知函数

(1)求函数的极值点;

(2)若直线过点(0,—1),并且与曲线相切,求直线的方程;

(3)设函数,其中,求函数上的最小值.(其中e为自然对数的底数)

 

 

查看答案和解析>>

同步练习册答案