【题目】设函数
.
(
)若
,求函数
的单调区间.
(
)若函数
在区间
上是减函数,求实数
的取值范围.
(
)过坐标原点
作曲线
的切线,证明:切点的横坐标为
.
【答案】(
)单调减区间为
,单调增区间为
.(
)
(
)见解析
【解析】试题分析:(1)当
时,求出函数的导函数
,分别令
和
,解出不等式得单调区间;(2)函数
在区间
上是减函数,即
对任意
恒成立,利用分离参数法可得最后结果;(3)设切点为
,对函数进行求导,根据导数的几何意义得
,根据切线过原点,可得斜率为
,两者相等化简可得
,先证存在性,再通过单调性证明唯一性.
试题解析:(
)当
时,
,
,令
,则
,令
,则
,∴函数
的单调减区间为
,单调增区间为
.
(
)
,∵
在区间
上是减函数,∴
对任意
恒成立,即
对任意
恒成立,
令
,则
,易知
在
上单调递减,∴
,∴
.
(
)设切点为
,
,∴切线的斜率
,
又切线过原点,
,∴
,即
,
∴
,存在性,
满足方程
,
所以
是方程
的根唯一性,
设
,则
,∴
在
上单调递增,且
,∴方程
有唯一解
,综上,过坐标原点
作曲线
的切线,则切点的横坐标为
.
科目:高中数学 来源: 题型:
【题目】如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD及其矩形附属设施EFGH,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O,半径为R,矩形的一边AB在直径上,点C、D、G、H在圆周上,E、F在边CD上,且
,设![]()
![]()
(1)记游泳池及其附属设施的占地面积为
,求
的表达式;
(2)当
为何值时,能符合园林局的要求?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)当
时,求函数
的最大值;
(2)令
,其图象上存在一点
,使此处切线的斜率
,求实数
的取值范围;
(3)当
,
时,方程
有唯一实数解,求正数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在曲线
上,⊙
过原点
,且与
轴的另一个交点为
,若线段
,⊙
和曲线
上分别存在点
、点
和点
,使得四边形
(点
,
,
,
顺时针排列)是正方形,则称点
为曲线
的“完美点”.那么下列结论中正确的是( ).
A. 曲线
上不存在”完美点”
B. 曲线
上只存在一个“完美点”,其横坐标大于![]()
C. 曲线
上只存在一个“完美点”,其横坐标大于
且小于![]()
D. 曲线
上存在两个“完美点”,其横坐标均大于![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型娱乐场有两种型号的水上摩托,管理人员为了了解水上摩托的使用及给娱乐城带来的经济收入情况,对该场所最近6年水上摩托的使用情况进行了统计,得到相关数据如表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
使用率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)请根据以上数据,用最小二乘法求水上摩托使用率
关于年份代码
的线性回归方程,并预测该娱乐场2018年水上摩托的使用率;
(2)随着生活水平的提高,外出旅游的老百姓越来越多,该娱乐场根据自身的发展需要,准备重新购进一批水上摩托,其型号主要是目前使用的Ⅰ型、Ⅱ型两种,每辆价格分别为1万元、1.2万元.根据以往经验,每辆水上摩托的使用年限不超过四年.娱乐场管理部对已经淘汰的两款水上摩托的使用情况分别抽取了50辆进行统计,使用年限如条形图所示:
![]()
已知每辆水上摩托从购入到淘汰平均年收益是0.8万元,若用频率作为概率,以每辆水上摩托纯利润(纯利润
收益
购车成本)的期望值为参考值,则该娱乐场的负责人应该选购Ⅰ型水上摩托还是Ⅱ型水上摩托?
附:回归直线方程为
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程选讲
在直角坐标系
中,曲线C1的参数方程为
(a为参数),以原点O为极点,
以x轴正半轴为极轴,建立极坐标系,曲 线C2的极坐标方程为![]()
(1)求曲线C1的普通方程与曲线C2的直角坐标方程.
(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定一个数列{an},在这个数列里,任取m(m≥3,m∈N*)项,并且不改变它们在数列{an}中的先后次序,得到的数列称为数列{an}的一个m阶子数列.已知数列{an}的通项公式为an=
(n∈N*,a为常数),等差数列a2,a3,a6是数列{an}的一个3阶子数列.
(1)求a的值;
(2)等差数列b1,b2,…,bm是{an}的一个m (m≥3,m∈N*) 阶子数列,且b1=
(k为常数,k∈N*,k≥2),求证:m≤k+1;
(3)等比数列c1,c2,…,cm是{an}的一个m (m≥3,m∈N*) 阶子数列,
求证:c1+c2+…+cm≤2-
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com