精英家教网 > 高中数学 > 题目详情

已知抛物线的顶点为,抛物线上两点满足,则点到直线的最大距离为

  A.1              B.2               C.3                D.4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线的顶点为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行.又抛物线与椭圆交于点M(
2
3
,-
2
6
3
)
,求抛物线与椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的中心.两曲线的焦点在同一坐标轴上,椭圆的长轴长为4.抛物线与椭圆交于点M(
2
3
,-
2
6
3
)
,求抛物线方程与椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.

(1)求此抛物线的解析式;

(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.

①求证:PB=PS;

②判断△SBR的形状;

③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(广东卷解析版) 题型:解答题

已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(Ⅰ) 求抛物线的方程;

(Ⅱ) 当点为直线上的定点时,求直线的方程;

(Ⅲ) 当点在直线上移动时,求的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试文科数学(广东卷解析版) 题型:解答题

已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

 

查看答案和解析>>

同步练习册答案