精英家教网 > 高中数学 > 题目详情

 

如图,已知双曲线 (a>0,b>0)其右准线交x轴于点A,双曲线虚轴的下端点为B,过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足:(O为原点)且(λ≠0)

(Ⅰ)求双曲线的离心率;

(Ⅱ)若a=2,过点B的直线l交双曲线于M、N两点,

问在y轴上是否存在定点C,使?为常数,

若存在,求出C点的坐标,若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 (Ⅰ)∵B(0,-b),A(

∵2          ∴D为线段FP的中点        1分

∴(c,即A、B、D共线                  2分

∴而?,?∴(

得a=2b∴e=           4分?

(Ⅱ)∵a=2而e=双曲线方程为①5分∴B(0,-1)

假设存在定点C(0,n)使为常数u,

设MN的方程为y=kx-1          ②          6分

由②代入①得

由题意得

设M(?          8分

?

=?

整理得:[4[8-]=0       10分

对满足

解得n=4,u=17

故存在y轴上的定点C(0,4),使为常数17          12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线以长方形ABCD的顶点A,B为左、右焦点,且过C,D两顶点.若AB=4,BC=3,则此双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为
F1(-c,0)、F2(c,0),点A(c,b),B(0,b),O为坐标原点,直线OA与直线F2B的交点在双曲线E上.
(1)求双曲线E的离心率;
(2)设直线F1A与双曲线E 交于M、N两点,
F1M
MA
F1N
NA
,若λ+μ=4,求双曲线E的方程.
(3)在(2)的条件下,过点B的直线与双曲线E相交于不同的两点P、Q,求
BP
BQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线x2-
y2
3
=1
,A,C分别是虚轴的上、下顶点,B是左顶点,F为左焦点,直线AB与FC相交于点D,则∠BDF的余弦值是(  )
A、
7
7
B、
5
7
7
C、
7
14
D、
5
7
14

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)其右准线交x轴于点A,双曲线虚轴的下端点为B,过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足:2
OD
=
OF
+
OP
(O为原点)且
AB
AD
(λ≠0)

(1)求双曲线的离心率;
(2)若a=2,过点B的直线l交双曲线于 M、N两点,问在y轴上是否存在定点C,使?
CM
CN
为常数,若存在,求出C点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线C:
y2
a2
-
x2
b2
=1
(a>0,b>0)的离心率e=
2
,F1、F2分别为双曲线C的上、下焦点,M为上准线与渐近线在第一象限的交点,且
MF1
MF2
=-1.
(1)求双曲线C的方程;
(2)直线l交双曲线C的渐近线l1、l2于P1、P2,交双曲线于P、Q,且
P1P
=2
PP2
,求|
PQ
|的最小值.

查看答案和解析>>

同步练习册答案