【题目】已知函数
.
(1)若
,恒有
成立,求实数
的取值范围;
(2)若函数
有两个极值点
,求证:
.
科目:高中数学 来源: 题型:
【题目】【2017届广东省深圳市高三下学期第一次调研考试(一模)数学(文)】已知函数
是
的导函数,
为自然对数的底数.
(1)讨论
的单调性;
(2)当
时,证明:
;
(3)当
时,判断函数
零点的个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用
、
、
三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表:
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
| 甲 | 4次 | 6次 | 2次 | 12次 |
| 乙 | 3次 | 6次 | 3次 | 12次 |
| 丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量
,求随机变量
的分布列和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且满足
,求数列
的通项公式.勤于思考的小红设计了下面两种解题思路,请你选择其中一种并将其补充完整.
思路1:先设
的值为1,根据已知条件,计算出
_________,
__________,
_________.
猜想:
_______.
然后用数学归纳法证明.证明过程如下:
①当
时,________________,猜想成立
②假设
(
N*)时,猜想成立,即
_______.
那么,当
时,由已知
,得
_________.
又
,两式相减并化简,得
_____________(用含
的代数式表示).
所以,当
时,猜想也成立.
根据①和②,可知猜想对任何
N*都成立.
思路2:先设
的值为1,根据已知条件,计算出
_____________.
由已知
,写出
与
的关系式:
_____________________,
两式相减,得
与
的递推关系式:
____________________.
整理:
____________.
发现:数列
是首项为________,公比为_______的等比数列.
得出:数列
的通项公式
____,进而得到
____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关心的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:
年龄 |
|
|
|
|
|
人数 | 4 | 5 | 8 | 5 | 3 |
年龄 |
|
|
|
|
|
人数 | 6 | 7 | 3 | 5 | 4 |
经调查年龄在
,
的被调查者中赞成“延迟退休”的人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.
(Ⅰ)求年龄在
的被调查者中选取的2人都赞成“延迟退休”的概率;
(Ⅱ)若选中的4人中,不赞成“延迟退休”的人数为
,求随机变量
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com