精英家教网 > 高中数学 > 题目详情
直线l过抛物线
y
2
 
=2px(p>0)
的焦点F,且交抛物线于P、Q两点,由P、Q分别向准线引垂线PR、QS,垂足分别为R、S,如果|PF|=a,|QF|=b,M为RS的中点,则|MF|=
ab
ab
分析:由题意,取PQ的中点N,利用|MN|=
1
2
(|PR|+|QS|)
,根据抛物线定义,可得|MN|=
1
2
|PQ|
,所以PM⊥QM,利用△PRM≌△PFM,可得 MF⊥PQ,在Rt△PMQ中,MF⊥PQ,利用射影定理可得结论.
解答:解:由题意,取PQ的中点N,
∵M为RS的中点,∴MN是梯形的中位线
|MN|=
1
2
(|PR|+|QS|)

根据抛物线定义,可得|PR|=|PF|=a,|QS|=|QF|=b,
|MN|=
1
2
|PQ|
,∴PM⊥QM.
∵PR=PF,∠RPM=∠FPM,PM=PM,∴△PRM≌△PFM,∴∠PFM=∠PRM=90°,∴MF⊥PQ.
在Rt△PMQ中,MF⊥PQ,∴|MF|2=|PF|×|QF|,∴|MF|=
ab

故答案为:
ab
点评:本题考查抛物线的定义,考查抛物线过焦点的性质,考查射影定理的运用,解题的关键是证明抛物线过焦点的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为(  )
A、y2=±4xB、y2=4xC、y2=±8xD、y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜率为2的直线l过抛物线y2=ax的焦点F,且与y轴相交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为(  )
A、y2=4xB、y2=8xC、y2=4x或y2=-4xD、y2=8x或y2=-8x

查看答案和解析>>

科目:高中数学 来源: 题型:

设斜率为k的直线l过抛物线y2=8x的焦点F,且和y轴交于点A,若△OAF (O为坐标原点)的面积为4,则实数k的值为(  )
A、±2B、±4C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l过抛物线y2=4x的焦点F交抛物线于A、B两点.
(1)若|AB|=8,求直线l的斜率
(2)若|AF|=m,|BF|=n.求证
1
m
+
1
n
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)直线l过抛物线y2=2px(p>0)的焦点,且与抛物线相交于A(x1,y1),B(x2,y2)两点,证明:y1y2=-p2
(2)直线l过抛物线y2=2px(p>0)的焦点,且与抛物线相交于A(x1,y1),B(x2,y2)两点,点C在抛物线的准线上,且BC∥x轴,证明:直线AC经过原点.

查看答案和解析>>

同步练习册答案