精英家教网 > 高中数学 > 题目详情
在数列|an|中,a1=t-1,其中t>0且t≠1,且满足关系式:an+1(an+tn-1)=an(tn+1-1),(n∈N+
(1)猜想出数列|an|的通项公式并用数学归纳法证明之;
(2)求证:an+1>an,(n∈N+).
分析:(1)由原递推式得到an+1=
(tn+1-1)an
an+tn-1
,再写出前几项,从而猜想数列|an|的通项公式,进而利用数学归纳法证明.
(2)利用(1)的结论,作差进行比较,故可得证.
解答:解:(1)由原递推式得到an+1=
(tn+1-1)an
an+tn-1
a2=
(t2-1)a1
a1+t-1
=
1
2
(t2-1)
a3=
(t3-1)a2
a2+t2-1
=
t3-1
3

猜想得到an=
tn-1
n
…(3分)
下面用数学归纳法证明an=
tn-1
n

10当n=1时   a1=t-1   满足条件
20假设当n=k时,ak=
tk-1
k

ak+1(
tk-1
k
+tk-1)=
tk-1
k
(tk+1-1)
,∴ak+1
k-1
k
=
tk+1-1
k
,∴ak+1=
tk+1-1
k+1

即当n=k+1时,原命题也成立.
由10、20an=
tn-1
n
…(7分)
(2)an+1-an=
tn+1-1
n+1
-
tn-1
n
=
1
n(n+1)
[n(tn+1-1)-(n+1)(tn-1)]
=
1
n(n+1)
[ntn(t-1)-(tn-1)]
=
t-1
n(n+1)
[ntn-(tn-1+tn-2+…+t+1)]

而ntn-(tn-1+tn-2+…+t+1)=(tn-tn-1)+(tn-tn-2)+…+(tn-t)+(tn-1)=tn-1(t-1)+tn-2(t2-1)+tn-3(t3-1)+…+t(tn-1-1)+(tn-1)=
>0,t>1
<0,0<t<1

故t>0,且t≠1时有an+1-an>0,即an+1>an…(13分)
点评:本题考查数列的递推公式,用数学归纳法证明等式成立.证明当n=k+1时命题也成立,是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案