设函数
,
(I)若
,求函数
的极小值,
(Ⅱ)若
,设
,函数
.若存在
使得
成立,求
的取值范围.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=-
x3+
x2-2x(a∈R).
(1)当a=3时,求函数f(x)的单调区间;
(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围;
(3)若过点
可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f (x) = ![]()
(1)试判断当
的大小关系;
(2)试判断曲线
和
是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与
的大小,并写出判断过程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
(I)当
时,讨论函数
的单调性:
(Ⅱ)若函数
的图像上存在不同两点
,
,设线段
的中点为
,使得
在点
处的切线
与直线
平行或重合,则说函数
是“中值平衡函数”,切线
叫做函数
的“中值平衡切线”.
试判断函数
是否是“中值平衡函数”?若是,判断函数
的“中值平衡切线”的条数;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com