精英家教网 > 高中数学 > 题目详情

△ABC的三边a,b,c满足等式acosA+bcosB=ccosC,则此三角形必是


  1. A.
    以a为斜边的直角三角形
  2. B.
    直角三角形
  3. C.
    等边三角形
  4. D.
    其它三角形
B
分析:先利用正弦定理把题设等式中的边换成角的正弦,利用和差化积公式和二倍角公式化简整理求得cos(A-B)=cosC,进而利用三角形内角和求得90°的内角,判断出三角形为直角三角形.
解答:由正弦定理可知a=2rsinA
b=2rsinB
c=2rsinC
代入acosA+bcosB=ccosC,得sinAcosA+sinBcosB=sinCcosC
sin2A+sin2B=2sinCcosC
即2sin(A+B)cos(A-B)=2sinCcosC
sin(A+B)=sin(180-C)=sinC
∴cos(A-B)=cosC
∴A-B=C或B-A=C
所以A=B+C或B=A+C
∴A=90°或B=90°.
所以是直角三角形故选B.
点评:本题主要考查了正弦定理的运用以及三角形形状的判断.解题的关键是利用正弦定理把等式的边转化成角的问题,利用三角函数的基本关系解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC的三边a,b,c成等比数列,则角B的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

锐角△ABC的三边a,b,c和面积S满足条件S=
c2-(a-b)24k
,又角C既不是△ABC的最大角也不是△ABC的最小角,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,cosA),
n
=(cosB,sinB),
m
n
=sin2C且A、B、C分别为△ABC的三边a,b,c所对的角.
(1)求角C的大小;
(2)若sinA,sinB,sinB成等比数列,且
CA
•(
AB
-
AC
)
=18,求c的值..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边a,b,c和面积S满足S=a2-(b-c)2,且b+c=8.
(1)求cosA;
(2)求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博一模)已知向量
p
m
=(sin(A-B),sin(
π
2
-A)),
p
n
=(1,2sinB),
p
m
p
n
=-sin2C,其中A,B,C分别为△ABC的三边a,b,c所对的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=2sinC,且S△ABC=
3
,求边c的长.

查看答案和解析>>

同步练习册答案