精英家教网 > 高中数学 > 题目详情
定义在R上的函数,若关于x的方程f2(x)+af(x)+b=3有3个不同实数解x1、x2、x3,且x1<x2<x3,则下列结论错误的是( )
A.x12+x22+x32=14
B.a+b=2
C.x1+x3>2x2
D.x1+x3=4
【答案】分析:令x=3得到f(3)=1代入到方程中得到a+b=2则B正确;令x=4得到f(4)=代入方程得到a+2b=11与a+b=2联立解得a=-7,b=9,则方程变为f2(x)-7f(x)+9=3即f2(x)-7f(x)+6=0得到f(x)=1或f(x)=6,则有一个解为2,另一解为,第三解为则A,D正确;C错误.
解答:解:令x=4,得:f(4)=,代入方程得到a+2b=11;令x=3得到f(3)=1代入到方程中得到a+b=2.所以B正确;
求出a=-7,b=9,则代入到关于x的方程f2(x)+af(x)+b=3得:
f2(x)-7f(x)+6=0
解得:f(x)=1或f(x)=6
则三个解分别为,2,.通过计算得到A、D正确,C错误.
故选C.
点评:本题考查了函数与方程的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知f(x)是定义在R上的函数,若对任意x∈R,都有f(x+4)=f(x)+2f(2),且函数f(x-1)的图象关于直线x=1对称,f(1)=2,则f(2011)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)、g(x)都是定义在R上的函数,若存在实数m、n使得h(x)=m•f(x)+n•g(x),则称h(x)为f(x)、g(x)在R上生成的函数.若f(x)=2cos2x-1,g(x)=sinx.
(1)判断函数y=cosx是否为f(x)、g(x)在R上生成的函数,并说明理由;
(2)记l(x)为f(x)、g(x)在R上生成的一个函数,若l(
π6
)=2
,且l(x)的最大值为4,求l(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的函数,若f(0)=2010且对任意x∈R,有f(x+2)-f(x)≤3.2x,f(x+6)-f(x)≥3.2x,则f(2010)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)、g(x)都是定义在R上的函数,若x=g[f(x)]方程有解,则函数g[f(x)]不可能是(  )
A、x2+x-
1
5
B、x2-
1
5
C、x2+x+
1
5
D、x2+
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•浦东新区一模)设f(x)是定义在R上的函数.
①若存在x1,x2∈R,x1<x2,使f(x1)<f(x2)成立,则函数f(x)在R上单调递增;
②若存在x1,x2∈R,x1<x2,使f(x1)≤f(x2)成立,则函数f(x)在R上不可能单调递减;
③若存在x2>0,对于任意x1∈R,都有f(x1)<f(x1+x2)成立,则函数f(x)在R上单调递增;
④对任意x1,x2∈R,x1<x2,都有f(x1)≥f(x2)成立,则函数f(x)在R上单调递减.
以上命题正确的序号是(  )

查看答案和解析>>

同步练习册答案