如图,在四棱锥
中,底面
为菱形,
,
为
的中点.![]()
(1)若
,求证:平面
平面
;
(2)点
在线段
上,
,试确定
的值,使
平面
.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥S-ABCD中,底面ABCD是矩形,SA
底面ABCD,SA=AD,点M是SD的中点,AN
SC且交SC于点N.![]()
(Ⅰ)求证:SB∥平面ACM;
(Ⅱ)求证:平面SAC
平面AMN.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥
,底面
是平行四边形,点
在平面
上的射影
在
边上,且
,![]()
.![]()
(Ⅰ)设
是
的中点,求异面直线
与
所成角的余弦值;
(Ⅱ)设点
在棱
上,且
.求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.![]()
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=
.![]()
(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥
的底面是正方形,
,点
在棱
上.![]()
(1)求证:平面
平面
;
(2)当
,且
时,确定点
的位置,即求出
的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=
,O为AB的中点.![]()
(Ⅰ)求证:EO⊥平面ABCD;
(Ⅱ)求点D到平面AEC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在圆锥PO中, PO=
,?O的直径AB=2, C为弧AB的中点,D为AC的中点.![]()
(1)求证:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com