【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:
分组 |
|
|
|
|
|
|
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人;
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.
【答案】(1)700人;(2) ①男生抽取4人,女生抽取1人.② ![]()
【解析】
(1)100名学生中“锻炼达人”的人数为10人,由此能求出7000名学生中“锻炼达人”的人数.
(2)①100名学生中的“锻炼达人”有10人,其中男生8人,女生2人.从10人中按性别分层抽取5人参加体育活动,能求出男生,女生各抽取多少人.
②抽取的5人中有4名男生和1名女生,四名男生一次编号为男1,男2,男3,男4,5人中随机抽取2人,利用列举法能求出抽取的2人中男生和女生各1人的概率.
(1)由表可知,100名学生中“锻炼达人”的人数为10人,将频率视为概率,我校7000名学生中“锻炼达人”的人数为
(人)
(2)①由(1)知100名学生中的“锻炼达人”有10人,其中男生8人,女生2人.
从10人中按性别分层抽取5人参加体育活动,则男生抽取4人,女生抽取1人.
②抽取的5人中有4名男生和1名女生,四名男生一次编号为男1,男2,男3,男4,则5人中随机抽取2人的所有结果有:男1男2,男1男3,男1 男4,男1女,男2男3,男2男4,男2女,男3男4,男3女,男4女.共有10种结果,且每种结果发生的可能性相等.记“抽取的2人中男生和女生各1人”为事件A,则事件A包含的结果有男1女,男2女,男3女,男4女,共4个,故
.
科目:高中数学 来源: 题型:
【题目】在
年
月
日,某市物价部门对本市的
家商场的某商品的一天销售量及其价格进行调查,
家商场的售价
元和销售量
件之间的一组数据如表所示:
价格 | 9 | 9.5 | 10 | 10.5 | 11 |
销售量 | 11 | 10 | 8 | 6 | 5 |
根据公式计算得相关系数
,其线性回归直线方程是:
,则下列说法正确的有( )
参考:![]()
A.有
的把握认为变量
具有线性相关关系
B.回归直线恒过定点![]()
C.![]()
D.当
时,
的估计值为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是
上的偶函数,对于任意
,都有
成立,当
时,有
给出下列命题:
①
;
②函数
的周期是6;
③函数
在
上为增函数;
④函数
在
上有四个零点.
其中所有正确命题的序号为_______________.(把所有正确命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小李从网上购买了一件商品,快递员计划在下午5:00-6:00之间送货上门,已知小李下班到家的时间为下午5:30-6:00.快递员到小李家时,如果小李未到家,则快递员会电话联系小李.若小李能在10分钟之内到家,则快递员等小李回来;否则,就将商品存放在快递柜中.则小李需要去快递柜收取商品的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
,在某一周期内的图象时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
x |
|
| |||
| 0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,并求函数
的解析式;
(2)求函数
的单调递增区间;
(3)求函数
在区间
上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“互联网
”是“智慧城市”的重要内士,
市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费
.为了解免费
在
市的使用情况,调査机构借助网络进行了问卷调查,并从参与调査的网友中抽取了
人进行抽样分析,得到如下列联表(单位:人):
经常使用免费WiFi | 偶尔或不用免费WiFi | 合计 | |
45岁及以下 | 70 | 30 | 100 |
45岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,判断是否有
的把握认为
市使用免费
的情况与年龄有关;
(2)将频率视为概率,现从该市
岁以上的市民中用随机抽样的方法每次抽取
人,共抽取
次.记被抽取的
人中“偶尔或不用免费
”的人数为
,若每次抽取的结果是相互独立的,求
的分布列,数学期望
和方差
.
附:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 |
| 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的偶函数f(x),其导函数
,当x≥0时,恒有![]()
+f(﹣x)<0,若g(x)=x2f(x),则不等式g(x)<g(1﹣2x)的解集为( )
A.(
,1)B.(﹣∞,
)∪(1,+∞)
C.(
,+∞)D.(﹣∞,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校大一新生中的6名同学打算参加学校组织的“演讲团”、“吉他协会”等五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中没有人参加“演讲团”的不同参加方法数为( )
A. 3600 B. 1080 C. 1440 D. 2520
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com