精英家教网 > 高中数学 > 题目详情
如图1-8,已知△ABC中,ADBC边上的中线,EAD的中点,BE的延长线交AC于点F.求证:AF =AC.?

图1-8

思路分析:要证AF =,只要能在FC上取一点G,能证明AF =FG =GC即可.当已知三角形一边中点时,常过该点作三角形其他边的平行线,构成平分第三边的基本图形.

证明:过D点作DGBFAC于点G.??

BD =DC,DGBF,?

FG =GC.?

又∵EFDG,?AE =ED?,?

AF =FG.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆C:(x+1)2+y2=8,顶点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足
AM
=2
AP
NP
AM
=0,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点A且倾斜角是45°的直线l交曲线E于两点H、Q,求|HQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆C上一动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足
FG
FH
,求λ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足
AM
=2
AP
NP
AM
=0,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点S(0,
1
3
)且斜率为k的动直线l交曲线E于A、B两点,在y轴上是否存在定点G,满足
GP
=
GA
+
GB
使四边形NAPB为矩形?若存在,求出G的坐标和四边形NAPB面积的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某篮球运动员参加了10场比赛,他每专场比赛得分的茎叶图如图所示,已知他得分的中位数为22分,若要使他得分的方差最小,则a=
2
2
,b=
2
2
 
1 2  3  3  7
2 a  b  5  6  8
3 0  

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足AM=2AP,NP⊥AM,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线l交曲线E于不同的两点G、H(点G在点F、H之间),且满足FG=
1
2
FH
,求直线l的方程;
(3)设曲线E的左右焦点为F1,F2,过F1的直线交曲线于Q,S两点,过F2的直线交曲线于R,T两点,且QS⊥RT,垂足为W;
(ⅰ)设W(x0,y0),证明:
x
2
0
2
+
y
2
0
<1

(ⅱ)求四边形QRST的面积的最小值.

查看答案和解析>>

同步练习册答案