如图,在四棱锥
中,底面ABCD是一直角梯形,
,
,
,且PA=AD=DC=
AB=1.![]()
(1)证明:平面
平面![]()
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT
(3)求异面直线
与
所成角的余弦值
![]()
(1)证明:先得![]()
由
,推出
,
,根据
得到平面
平面
;
(2)
。
解析试题分析:![]()
(1)证明:∵
,
∴![]()
又∵
,![]()
∴
,∵
,且![]()
∴
,又∵
∴平面
平面
4′
(2)连接MN,MT,NT; ∵M、N分别为AB、AP中点 ∴MN//PB
∵
,∴PB∥平面MNT 7′
解:∵AB中点M,AP中点N,BC中点T,,则MN//PB,MT//AC
∴
就是异面直线AC与PB所成角(或补角)。 9′
∵
,∴在RT△PAB中,
,![]()
在RT△ADC中,
,
,在RT△ACT中,
,
在RT△NAT中,
,∴在△MNT中,![]()
故异面直线AC与PB所成的角的余弦值为
12′
考点:本题主要考查立体几何中的平行关系、垂直关系、角的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题属于立体几何中的基本问题。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图4,在三棱柱
中,△
是边长为
的等边三角形,
平面
,
,
分别是
,
的中点. ![]()
(1)求证:
∥平面
;
(2)若
为
上的动点,当
与平面
所成最大角的正切值为
时,
求平面
与平面
所成二面角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在四棱柱
中,底面
是直角梯形,AB∥CD,∠ABC=
,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD![]()
(1)求证:AB⊥平面PBC
(2)求三棱锥C-ADP的体积
(3)在棱PB上是否存在点M使CM∥平面PAD?
若存在,求
的值。若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知点B在以AC为直径的圆上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.![]()
(I)证明:SC⊥EF;
(II)若
求三棱锥S—AEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分) 如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,
且∠A1AD=∠A1AB=60°。![]()
①求证四棱锥 A1-ABCD为正四棱锥;
②求侧棱AA1到截面B1BDD1的距离;
③求侧面A1ABB1与截面B1BDD1的锐二面角大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1,侧面BCC1B1丄底面ABC.![]()
(I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱长均为2,侧棱BB1与底面 ABC所成的角为60°.问在线段A1C1上是否存在一点P,使得平面B1CP丄平面ACC1A1,若存在,求C1P与PA1的比值,若不存在,说明 理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图所示的几何体是由以正三角形
为底面的直棱柱被平面
所截而得.
,
为
的中点.![]()
(1)当
时,求平面
与平面
的夹角的余弦值;
(2)当
为何值时,在棱
上存在点
,使
平面
?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com