设
是正整数,
为正有理数。
(I)求函数
的最小值;
(II)证明:
;
(III)设
,记
为不小于
的最小整数,例如
,
,
。令
,求
的值。
(参考数据:
,
,
,
)
科目:高中数学 来源: 题型:
20.(本小题共13分)
对于每项均是正整数的数列
,定义变换
,
将数列
变换成数列
![]()
.
对于每项均是非负整数的数列
,定义变换
,
将数列
各项从大到小排列,然后去掉所有为零的项,得到数列
;
又定义
.
设
是每项均为正整数的有穷数列,令
.
(Ⅰ)如果数列
为5,3,2,写出数列
;
(Ⅱ)对于每项均是正整数的有穷数列
,证明
;
(Ⅲ)证明对于任意给定的每项均为正整数的有穷数列
,存在正整数
,当
时,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com