用总长14.8m的钢条制成一个长方体容器的框架,如果所制做容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.
解答:
解:设容器底面短边长为xm,则另一边长为(x+0.5)m,
高为![]()
由3.2﹣2x>0和x>0,得0<x<1.6,
设容器的容积为ym3,则有y=x(x+0.5)(3.2﹣2x)(0<x<1.6)
整理,得y=﹣2x3+2.2x2+1.6x,(4分)
∴y'=﹣6x2+4.4x+1.6(6分)
令y'=0,有﹣6x2+4.4x+1.6=0,即15x2﹣11x﹣4=0,
解得x1=1,
(不合题意,舍去).(8分)
从而,在定义域(0,1,6)内只有在x=1处使y'=0.
由题意,若x过小(接近0)或过大(接受1.6)时,y值很小(接近0),
因此,当x=1时y取得最大值,y最大值=﹣2+2.2+1.6=1.8,这时,高为3.2﹣2×1=1.2.
答:容器的高为1.2m时容积最大,最大容积为1.8m3.(12分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com