精英家教网 > 高中数学 > 题目详情
已知经过点() 的双曲线C: (a>0,b>0)的离心率为2。
(Ⅰ)求双曲线C的方程;
(Ⅱ)是否存在经过点(0,-1)的直线l与双曲线C有两个不同的交点A、B,且线段AB的垂直平分线分别交x轴、y轴于点P、Q,使得四边形APBQ为菱形?若存在,求出直线l的方程,若不存在,请说明理由.
解:(Ⅰ)依题意有:且c2 =a2+b
所以a2=1,b2=3 
双曲线 的方程为                    
(Ⅱ)①若直线l 的斜率不存在,则直线l 与双曲线C 没有交点,故满足条件的直线 l不存在。
②若直线l 的斜率为0 ,则线段AB 为y 轴平行;不满足条件,直线l 不存在。
③若直线 l的斜率为± ,则直线l 与双曲线C 的渐近线平行,故满足条件的直线 l不存在。
④若直线 l的斜率存在,且不为 0不为± 时设为k ,则直线l 的方程为y=kx-1
 设A(x1,y1)、B(x2,y2),
 得(3-k2)x+2kx-4=0  
△=4k2+16(3-k2)>0-2<k<2
∴x1+x2=,y1+y2=    
∴线段AB 的中点为() 
∴线段AB 的垂直平分线 
∴P(,0)Q(0,)       
∴ 线段PQ 的中点为() 
若四边形APBQ 为菱形,则线段PQ 的中点在直线l 上,所以
 
解得k2=-1 ,这矛盾
综上,不存在满足条件的直线
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4
10

(1)求直线CD的方程;
(2)求圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以点C为圆心的圆经过点A(-1,0)和B(3,4),且圆心C在直线x+3y-15=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)设点Q(-1,m)(m>0)在圆C上,求△QAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知经过点(
2
3
)
的双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率为2.
(Ⅰ)求双曲线C的方程;
(Ⅱ)是否存在经过(0,-1)的直线l与双曲线C有两个不同的交点A、B,且线段AB的垂直平分线分别交x轴,y轴与点P、Q,使得四边形APBQ为菱形?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知经过点A(-2,0),且以(λ,1+λ)为方向向量的直线l1与经过点B(2,0),且以(1+λ,-3λ)为方向向量的直线l2相交于点P,其中λ∈R.
(1)求点P的轨迹C的方程;
(2)是否存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M、N,且满足|BM|=|BN|?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案