科目:高中数学 来源: 题型:解答题
如图1,在四棱锥
中,
底面
,面
为正方形,
为侧棱
上一点,
为
上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.![]()
(Ⅰ)求四面体
的体积;
(Ⅱ)证明:
∥平面
;
(Ⅲ)证明:平面
平面
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点. ![]()
(Ⅰ) 证明EF//平面A1CD;
(Ⅱ) 证明平面A1CD⊥平面A1ABB1;
(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在边长为1的等边三角形
中,
分别是
边上的点,
,
是
的中点,
与
交于点
,将
沿
折起,得到如图所示的三棱锥
,其中
.![]()
![]()
(1) 证明:
//平面
;
(2) 证明:![]()
平面
;
(3) 当
时,求三棱锥
的体积
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱柱![]()
![]()
![]()
(I)当正视方向与向量
的方向相同时,画出四棱锥
的正视图(要求标出尺寸,并写出演算过程);
(II)若M为PA的中点,求证:求二面角![]()
(III)求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,
且AC=AD=CD=DE=2,AB=1.![]()
(Ⅰ)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(Ⅱ)求多面体ABCDE的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com