精英家教网 > 高中数学 > 题目详情
已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ,则曲线C1与C2交点的个数为
 
个.
分析:已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ,可将圆C和直线l先化为一般方程坐标,然后再计算曲线C1与C2交点的个数.
解答:解:∵曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ,
又x=pcosθ,y=psinθ,分别代入消去p和θ,可得,
x=3和x2+y2=4x,
∴把x=3代入x2+y2=4x得,
y=±
3

∴曲线C1与C2交点的个数为2个.
故答案为2.
点评:此题考查极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<
π2
)
,则曲线C1与C2交点的极坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1、C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<
π2
),求曲线C1、C2交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:已知曲线C1,C2的极坐标方程分别为ρ=4cos(θ+
π
6
)
ρcos(θ+
π
6
)=4

(1)将C1,C2的方程化为直角坐标方程;
(2)设点P在曲线C1上,点Q在C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东模拟)(坐标系与参数方程选做题)已知曲线C1、C2的极坐标方程分别为ρ=-2cos(θ+
π
2
)
2
ρcos(θ-
π
4
)+1=0
,则曲线C1上的点与曲线C2上的点的最远距离为
2
+1
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临川区模拟)请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.
(1)已知曲线C1、C2的极坐标方程分别为ρ=-2cos(θ+
π
2
)
2
ρcos(θ-
π
4
)+1=0
,则曲线C1上的点与曲线C2上的点的最远距离为
2
+1
2
+1

(2)设a=
x2-xy+y2
,b=p
xy
,c=x+y,若对任意的正实数x,y,都存在以a,b,c为三边长的三角形,则实数p的取值范围是
(1,3)
(1,3)

查看答案和解析>>

同步练习册答案