精英家教网 > 高中数学 > 题目详情

在双曲线的定义中,P为动点.

(1)若|PF1|-|PF2|=2a时,曲线只表示________.

(2)若|PF1|-|PF2|=-2a时,曲线只表示________.

(3)若|F1F2|=2a时,动点的轨迹不再是双曲线,而是________.

(4)若|F1F2|<2a时,动点的轨迹________.

答案:焦点F2所对应的一支双曲线 焦点F1所对应的一支双曲线 以F1、F2为端点向外的两条射线 不存在
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距为2c,若
c
a
=
5
-1
2
(≈0.618),则称椭圆C为“黄金椭圆”.
(1)求证:在黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比数列.
(2)黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F2(c,0),P为椭圆C上的任意一点.是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-3
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源:导学大课堂选修数学1-1苏教版 苏教版 题型:022

在双曲线的定义中,P为动点.

(1)若|PF1|-|PF2|=2c时,曲线只表示_________.

(2)若|PF1|-|PF2|=-2c时,曲线只表示以_________.

(3)若|F1F2|=2a时,动点的轨迹不再是双曲线,而是_________.

(4)若|F1F2|<2a时,动点的轨迹_________.

查看答案和解析>>

科目:高中数学 来源:上海市卢湾区2010届高三第二次模拟考试数学理科试题 题型:044

已知椭圆C:(a>b>0),其焦距为2c,若(≈0.618),则称椭圆C为“黄金椭圆”.

(1)求证:在黄金椭圆C:(a>b>0)中,a、b、c成等比数列.

(2)黄金椭圆C:(a>b>0)的右焦点为F2(c,0),P为椭圆C上的

任意一点.是否存在过点F2、P的直线l,使l与y轴的交点R满足?若存在,求直线l的斜率k;若不存在,请说明理由.

(3)在黄金椭圆中有真命题:已知黄金椭圆C:(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2

试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2010年上海市卢湾区高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆C:(a>b>0),其焦距为2c,若(≈0.618),则称椭圆C为“黄金椭圆”.
(1)求证:在黄金椭圆C:(a>b>0)中,a、b、c成等比数列.
(2)黄金椭圆C:(a>b>0)的右焦点为F2(c,0),P为椭圆C上的任意一点.是否存在过点F2、P的直线l,使l与y轴的交点R满足?若存在,求直线l的斜率k;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆C:(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

同步练习册答案